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mesh. In particular, we clearly explain why this inaccuracy problem concerns the 2D or
3D geometry and does not concern the 1D geometry. The theoretical arguments are based
on the Hodge decomposition, on the fact that an appropriate well-prepared subspace is
invariant for the linear wave equation and on the notion of first-order modified equation.
This theoretical approach allows to propose a simple modification that can be applied to
any colocated scheme of Godunov type or not in order to define a large class of colocated
schemes accurate at low Mach number on any mesh. It also allows to justify colocated
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Roe scheme schemes that are accurate at low Mach number as, for example, the Roe-Turkel and the
Roe-Turkel scheme AUSM*-up schemes, and to find a link with a colocated incompressible scheme stabilized
AUSM*-up scheme with a Brezzi-Pitkdranta type stabilization. Numerical results justify the theoretical argu-
Linear wave equation ments proposed in this paper.

Hodge decomposition © 2009 Elsevier Inc. All rights reserved.

1. Introduction

It is sometimes essential to take into account compressibility phenomena even when a flow is at low Mach number.
Moreover, a flow may also be at low Mach number only in a part of the physical domain. In such situations, it is important
to model the flow with the compressible Navier-Stokes system.

Since the compressible Euler system is the compressible Navier-Stokes system without the physical diffusive terms, any
study at low Mach number may firstly concern the compressible Euler system. Conservative finite volume schemes as Godu-
nov type schemes [1-3] are colocated schemes that are well adapted to capture shock waves solution of the compressible
Euler system. Nevertheless, it is well known that Godunov type schemes are not accurate at low Mach number [4-10]. This
inaccuracy is characterized by the creation of spurious pressure and velocity waves that avoid the velocity field to be close to
a divergence-free field. Let us note that this inaccuracy concerns other colocated compressible schemes [11,12]. This inac-
curacy problem comes from a loss of information between the continuous and discrete levels. Indeed, at the continuous level,
the solution of the compressible Euler system converges toward the solution of the incompressible Euler system when the
Mach number goes to zero. Nevertheless, many numerical experiments show that at low Mach number, the numerical solu-
tion given by a colocated compressible scheme may be far from an incompressible numerical solution. In [6,10], the origin of
the inaccuracy is explained by studying the 1D-formulation of Godunov type schemes through a formal asymptotic devel-
opment based on the Mach number. Such studies allow, firstly, to partly find the origin of the inaccuracy and, secondly, to
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propose modifications of Godunov type schemes to increase the accuracy at low Mach number. For example, in [10], the Roe
scheme with pressure correction is proposed. This scheme consists in modifying the numerical viscosity by adding a pressure
correction on the momentum equation. The Roe-Turkel [4,5,7] and VFRoe-Turkel [8,9] schemes are other modified Godunov
type schemes; the schemes proposed in [6,13] are similar to the Roe-Turkel scheme. All these schemes are built by modi-
fying the numerical diffusion with the Turkel preconditioning matrix [14,15]. In [7-9], the Roe-Turkel and VFRoe-Turkel
schemes are justified with a formal asymptotic development based on the Mach number; idem in [6]. Let us underline that
the Roe-Turkel and VFRoe-Turkel schemes are much more complicated to implement than the Roe scheme with pressure
correction proposed in [10]. All these modified Godunov type schemes give good numerical results. In [12], Liou proposes
a flux splitting type scheme - named AUSM*-up scheme - that is also accurate at low Mach number. In [16-18], other colo-
cated schemes accurate at low Mach number are proposed.

We propose in this work a theoretical framework to clearly explain the inaccuracy of Godunov type schemes at low Mach
number when the mesh is Cartesian. This theoretical framework is based on a Schochet’s result [19], on the Hodge decom-
position, on the fact that an appropriate well-prepared subspace is invariant for the linear wave equation and on the notion
of first-order modified equation. In particular, we show that the inaccuracy problem does not exist in 1D geometry that is to
say only exists in 2D or 3D geometry. Let us note that in [8], the linear wave equation is also studied by Guillard et al. But, our
analysis seems to be more direct and, especially, allows to clearly identify the invariance property that is the key argument.
Our analysis underlines also that the inaccuracy of Godunov type schemes at low Mach number can be explained (at least
partly) with simple linear arguments by only analyzing the linear wave equation. Nevertheless, it is important to note that
the proposed theoretical approach would not have been possible without the previous works of Schochet and Guillard et al.
We also propose a formal approach that is coherent with our theoretical results and we compare this formal approach to
other formal approaches [4,6,8,10] that seem to be less precise. The proposed theoretical approach allows us to conjecture
the existence of a large class of colocated schemes that are accurate at low Mach number on any mesh. This class is named
low Mach X schemes and consists in a simple modification of any X scheme of Godunov type (X € {Roe, VFRoe,...}) or not (X =
kinetic scheme [20] for example). Numerical results show that the low Mach Roe scheme and the low Mach VFRoe scheme (i.e.
X =Roe and X = VFRoe) are accurate at low Mach number. Let us underline that the proposed theoretical approach justifies the
Roe-Turkel [4,5,7] (or VFRoe-Turkel [8,9]) scheme and the Roe scheme with pressure correction [10] since, in the linear case,
they are respectively similar and identical to the low Mach Godunov scheme. Moreover, it is also possible to prove that the
schemes proposed in [12,16-18] are similar or identical to a low Mach X scheme when the Mach number goes to zero.

The outline of this paper is the following. In Section 2, we recall the derivation of the incompressible Euler system from
the compressible Euler system with formal arguments and with theoretical arguments due to Schochet [19]. Then, we show
how to prove the Schochet’s result in the linear case with simple arguments. This Section 2 allows us to introduce the notion
of well-prepared subspace and a sufficient condition allowing to avoid the creation of spurious pressure and velocity waves.
In Section 3, we propose a simple formal approach showing that the inaccuracy problem only exists in 2D or 3D geometry. In
Section 4, we explain with theoretical arguments why Godunov type schemes are inaccurate only in 2D or 3D geometry. In
Section 5, we propose to apply a simple modification to any colocated X scheme in order to define a large class of low Mach X
schemes accurate at low Mach number. This modification is justified in the case of the linear Godunov scheme. Then, we
show that Roe-Turkel type schemes [7-9] and Godunov type schemes with pressure correction [10] are respectively similar
and identical to the low Mach Godunov scheme in the linear case. We also underline that the AUSM*-up scheme [12] and the
colocated schemes proposed in [16-18] are respectively similar and identical to a low Mach X scheme when the Mach number
goes to zero. Moreover, we formally show that there exists a link between the proposed low Mach Godunov scheme and a
colocated incompressible scheme stabilized with a Brezzi-Pitkdranta type stabilization [21]. In Section 6, we introduce a
more general theoretical framework allowing to propose other colocated schemes that do not create spurious pressure
and velocity waves. Finally, we show in Section 7 numerical results that justify the theoretical arguments proposed in this

paper.

2. Convergence of a compressible flow toward an incompressible flow

We recall the classical formal derivation of the incompressible Euler system from the compressible Euler system [22]. This
recall will allow us to formally introduce the notion of well-prepared initial condition. This will be essential in the sequel.
Then, we recall the theoretical derivation proposed in [19] and we prove the result in the linear case with simple arguments.
This linear study will allow us to, firstly, define in Section 2.4 a sufficient condition to avoid the creation of spurious (pressure
and velocity') waves, to, secondly, explain in Section 4 the inaccuracy of Godunov type schemes at low Mach number and to,
thirdly, propose in Section 5 a simple curative solution. In Section 6, we will propose a weaker sufficient condition to avoid the
creation of spurious waves.

2.1. Formal derivation

The dimensionless compressible Euler system is given by

! In the sequel, we write spurious waves for spurious pressure and velocity waves.
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where M is the Mach number (M < 1 at low Mach number). In (1), p,u, p, ¢ and E are respectively the density, the velocity,

the pressure, the internal energy and the total energy. System (1) is closed as soon as the equation of state ¢(p, p) (or p(p, €))
is known. System (1) is equivalent to the non-conservative system

op+V-(pu)=0, @)
PO+ (u- Viul + % =0, (b) 2)

dp+u-Vp+pa*(p,p)V-u=0 (o)

for any regular solution. In (2), a(p,p) = \/i” (p, &) +5 2 (p,e) is the sound velocity (we admit that &(p,p) is such that

ap p? Oe
a(p,p) > 0 for any (p,p) € Rf x R}). By supposing that
p(f,X) IPO(I,X)+Mp1(t,X)+M2p2(t,X)+---7 (a) (3)
u(tax) :uo(t,x)—‘,—MU](t,X)—‘r-", (b)

by injecting (3) in (2) and by separating the ®(M~2) and O(M~") terms, we formally find that Vp, = 0 and Vp, = 0. Thus, we
can replace (3)(a) with p(t,x) = p,(t) + M?p,(t,x) + - - . Then, by taking the O(1) terms, we obtain

p +V - (pug) =0, (a)
ploetio + (uo - V)] + Vp, =0, (b)
p (4)
V- uy = ,L()(t) (c)
* 7 pa(p,po)

When we solve system (1) on a bounded domain Q with a slipping or periodic boundary condition, we have [,V - updx = 0.
Thus, by integrating (4)(c) on , we find that 4p,(t) = 0 since pa®(p,p,) > 0. This means that the pressure is given by
p(t,x) =p, + M*p,(t,x) +--- where p, is a constant of order 1. Coming back to (4)(c), we obtain that V - uy = 0. Coupled
to (4)(a), this gives d:p +uo - Vp = 0. By imposing p(t = 0,x) = p,(x) where p, is a strictly positive function such that

O(llp.I) =1 (|| - || is an appropriate norm), we finally “obtain” that, at low Mach number (i.e. M < 1) and when the initial
conditions are well-prepared in the sense
— _ 2 _ct
p(t=0,x) = p.+ OMI)(X),  ith P> - Gy (5)
u(t =0,x) =u(x) + O(M)(x) V-u=0

(Cff is a strictly positive constant of order 1; ||ii] is also of order 1), the solution (p,u,p) of compressible Euler system (1) is
close to the solution (p,u,p) of the incompressible Euler system with variable density

op+u-Vp=0,
p(t=0,x) = p.(x),
V-u=0,

vII

ou+(u-Viu+

=0,

*

u(t=0,x) = ux),
D =D..

2.2. Theoretical derivation in the non-linear barotropic case

We now recall the convergence result proposed by Schochet [19] in the barotropic case. The dimensionless barotropic
Euler system is given by

{awv(pu):o,

Vp(p) ©®)

or(pu) + V- (pueu) +7

2 In all the paper, the notation O() means of the order of .



S. Dellacherie /Journal of Computational Physics 229 (2010) 978-1016 981

In (6), we suppose that p(p) is a strictly increasing function from R} to R;. Thus, the sound velocity a(p) = \/p’(p) is strictly
positive. By defining the variable r with

p(t,X) :=p, {1 + %r(r, x)} ()

(p, = ij where ij is a strictly positive constant of order 1 and a. = /p’(p,)), for any regular solution, system (6) is equiv-
alent to

0.9+ H(0) + (@) =0 ®)
where
a-(1): @
o= (o o) =@ ©
(V)
u(a* -:er)V ‘u ®)
=[Pl | o
a*(l—s—%r)

The operators H and £/M are respectively the convective operator — whose time scale is of order 1 - and the acoustic oper-
ator — whose time scale is of order M. To simplify the analysis, Schochet supposes that barotropic Euler system (8) is solved
with periodic boundary conditions. Thus, Q is the torus T¢ := [a;,b1] x --- x [ag, bg] in R? (d € {1,2,3}). We now define

E= {q = (lrl) € (L3(T%)"** such that Vr =0 and V-u = 0}7
&t = {q = (;) e (L*(1%)"** such that [,,rdx =0 and 3¢ € H'(T¢),u = Vd)}

where the Hilbert space (L2(T9))'* .= {q = (Z) such that [or2dx + [ |Jul’dx < +oo} is provided with the classical in-
ner product (q,,q,) = [« 4;9,dx. We also recall the Hodge decomposition [23,24]:

Lemma 2.1.

Ea&t = [IXTH))" and &1 &b

In other words, any q € (L*(T%))'*¢

can be decomposed into
q=q+q" where (4,q")eé&x&r (10)
and this decomposition — named Hodge decomposition - is unique.

The Hodge decomposition (10) is also known as the Leray or Helmholtz decomposition. In the sequel, we define the Hodge
projection P with Pq := q.

A simplified version of the result proposed by Schochet and applied to (8) (cf. theorems 2.1 and 3.1 in [19]) may be writ-
ten in the following way:

Theorem 2.1. Let q(t,x) be solution of

L

{atQ+H(q)+M(Q)=0~, (11)
q(t =0,x) = ¢°(x)

and let q(t,x) be solution of

{ 9:q +PH(q) =0, (12)
q(t=0,x) = Pq°(x)
on Q = T9123} Then:
P =0)=0(M), ~
(e 0= -aie > 0 - o), (15

Let us note that estimate (13) is also written in [22] (see (2.127) in [22]). It is not difficult to verify that system (12) is
equivalent to the incompressible Euler system with constant density
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{V~u:0, and rit = 0,x)=C",
ou+ (u-Vu+VII=0 V-u(t=0,x)=0.
Thus, Theorem 2.1 means that when the initial conditions are well-prepared in the sense
lg — Pql|(t = 0) = O(M), (14)
the solution q(t,x) of barotropic Euler system (11) is close to the solution q of incompressible Euler system (12). Due to these

statements, we will also consider £ as the well-prepared subspace. Moreover, by using (7) and by supposing that the equation
of state p = p(p) is enough regular, we easily verify that condition (14) is equivalent to the condition

p(t=0,%) = p, + OM*)(x), p.=Cp
p(t=0,x) =p, + O(M*)(x),  Wwith p. =p(C}), (15)
u(t =0,x) = u(x) + O(M)(x) V-u=0.

Condition (15) is identical to condition (5) except that there is a condition on the density in (15): this difference comes
from the fact that (5) and (15) concern, respectively compressible Euler system (1) (p = p(p, €) in this case) and barotropic
Euler system (6) (p = p(p) in this case, which implies that the asymptotic expansions of p and p are necessarily linked).

2.3. Theoretical derivation in the linear case

The linear version of (11) is given by

{8tq+Hq+%q0, (16)
q(t =0,x) = q°(x)

where
- (1)
Ha= (o ) = @V (17)
lq=a. <VV'ru>

In (17), the velocity field u. is a constant field in time and space. System (16) may also be deduced from a linearization of
compressible Euler system (1) by defining r with

p(t,x) := p,a? {1 +aMr(t,x)} (18)

instead of (7). Thus, in the sequel, r will be considered as a pressure perturbation rather than a density perturbation. Linear
equation (16) was also studied in [8] in the Fourier space. Here, we study linear equation (16) in the physical space to obtain
the linear version of Theorem 2.1. We use simple arguments based on the Hilbertian theory of linear operators. The proposed
analysis seems to be more direct than the one proposed in [8] and, especially, allows to clearly identify the invariance prop-
erty that will be the key argument to explain the inaccuracy of 2D or 3D Godunov type schemes at low Mach number in
Section 4 and to propose a curative solution in Section 5. Let us now define the following energies

E = ||q|* = total energy,

Einc := ||g||* = incompressible energy,

Eqc := ||q*||* = acoustic (or compressible) energy.
Of course, E = Ej,c + E, since £ L £*. The linear version of Theorem 2.1 is given by:

Proposition 2.1. Let q(t,x) be solution of

L
{8tq+Hq+Mq0, (19)
q(t =0,x) = q°(x),
let q(t,x) be solution of
{&E+H6:O, 20)
q(t =0,x) = Pq°(x)

on Q = T9123) and let us define the Hodge decomposition (q,q*) € € x £* of q. Then, G = q and q* is solution of (19) with the
initial condition qOL. Moreover, we have Einc(t = 0) = Ejnc(t = 0) and Eq(t = 0) = E,(t = 0). This allows to write that
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lg - Pgli(t=0)=0M) = |q-qli(t > 0)=OM). (21)
Of course, Proposition 2.1 is a corollary of Theorem 2.1 (note that HqG = PHq and that H(q) # PH(q)). Nevertheless, since
(19) is a constant-linear equation, we can propose a simple proof that will be useful to understand the inaccuracy of Godunov
type schemes at low Mach number in Section 4 and to propose a curative solution in Section 5. This proof is based on two
basic properties satisfied by linear equation (19). The first one is a classical energy conservation property:
Lemma 2.2. Let q(t,x) be solution of (19) on Q@ = T4{1:23} Then:
E(t =0)=E(t=0).
The second one is an invariant property in the sense that £ and £* are invariant subspaces for Partial Differential Equation
(PDE) (16). This property is central to understand the analysis proposed in Sections 4 and 5:

Lemma 2.3. Let q(t,x) be solution of (19) on Q@ = T41:23} Then:

(1)Vg° c&: qt =0) €&
(2) Vg e &+ : q(t = 0) e &*.

Remark. Let us remark that (20) is equivalent to the system

_ st
o+ -Viu=0 + e > 0,x) =, (22)
V-u(lt=0,x)=0.
System (22) is “incompressible” since the invariance of £ (see point 1 of Lemma 2.3) means that
ou+ (u, - Vyu=0,
-u(t = 0,x) =0. 23
{v.u(t:o,x):o V-u(t >0, 23)

Let us note that (23) may be verified via a direct calculation on the PDE in (23).

Proof of Proposition 2.1: Let ¢° = ¢° + q°* be the Hodge decomposition of q° and let q, and g, be two solutions of (19) with
the respective initial conditions gq,(t =0,x)=3°(x) and q,(t =0,x) =q°" (x). By using Lemma 2.3, we obtain that
q;(t = 0) € £ and ¢, (t = 0) € £&-. Moreover, by linearity of H and L, we find that g = q; + ¢,. Thus, by unicity of the Hodge
decomposition (10), we conclude that ¢ = g; and g* = g,. And since &€ = KerL, we find that § = q. We conclude the proof
by using Lemma 2.2. 0O

It remains to prove Lemmas 2.2 and 2.3:
Proof of Lemma 2.2: We have 4 ||q|[*> = 2(q, d.q) = —2(q, Hq) — 2(q, L q). We have also
200.Ha) = [ u-Vialx= [ V- (laPujdx— [ 101’V wdx= [l nds— [ PV udx
JT JT JT Jotd Jrd
=0- / g’V -u.dx=0 (V-u, =0 since u, = C%).
Jrd
Moreover (q,Lq) = a.([;a TV -udx + [su-Vrdx) =a, [,latu-nds=0. O

The proof of Lemma 2.3 is based on the following lemma whose proof is in Appendix A:

Lemma 2.4. Let A be a linear isometry on a Hilbert space H and let £ be a vector subspace of H. Then:
AE=€ = As-ceEh

Proof of Lemma 2.3: Let us define the linear application
e [ @)= @) o
¢ :
oAM= gt )

where q is solution of (19) on @ = T¢. Lemma 2.2 allows us to write that A" is an isometry. Thus, by using Lemma 2.4, we

just have to prove that A™™ is surjective on £ to prove that £* is invariant. Since u, is a constant velocity field in time and
space, we have AMM — 7H o A0L/M \where 7! is the application associated to the linear transformation q(t, x)—q(t,x — u.t).
Moreover, A"“™ is the identity application on & since £ = KerL. This means that A" — 7% on £, Thus, we obtain that
AWM is surjective on £ by noting that TH is surjective on &. Let us remark that AWLMo THo ALLM \when we have only
V - u,(x) = 0. That is why we impose u, = C* in (17). O
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2.4. A sufficient condition to avoid the creation of spurious waves at low Mach number

Estimate (21) - that characterizes the convergence of a compressible flow toward an incompressible flow in the linear
case - is a direct consequence of Lemma 2.1 (energy conservation property) and of Lemma 2.3 (invariance property of
the well-prepared subspace £ and of the acoustic subspace £*). Since § = Pq in the case of linear equation (19), estimate
(21) may also be written with

lg—Pqli(t=0)=0M) = |q—Pq||(t =0)=0OM). (25)
If we just want to prove estimate (25) without using the property g = Pq, only the well-posedness of linear equation (19)

and the invariance of £ are important. Indeed, we have the following result:

Theorem 2.2. Let q(t,x) be solution of the linear PDE

atq+-7'—xq:07
26
{q(r=0>=q° (26)

supposed to be well-posed on L= ([0, +ocl; (L*(T%))'*") where F, is a linear spatial differential operator. Then:

(1) the solution q(t,x) satisfies
lg - Pql(t=0)=0M) = [q-q|(t=>0)=0M) (27)

where q(t,x) is solution of (26) with the initial condition q(t =0)= Pq’. Nevertheless, we do not have a priori
g — Pql|(t = 0) = O(M);
(2) when F, is such that

V£ q(t = 0) ek, (28)

the solution q(t,x) satisfies (27) and
lg—Pqll(t=0)=0M) = |q-Pql(t>0)=0M). (29)

Thus, we have also ||q — Pq||(t > 0) = O(M).

The second point of Theorem 2.2 is important since estimate (29) means that g(t > 0) is almost in the well-prepared sub-
space £ when it is the case at t = 0. In other words, under sufficient condition (28) and when the initial conditions are well-
prepared, PDE (26) does not create any spurious wave. At the opposite, the first point of Theorem 2.2 is not really important
since estimate (27) does not mean that q(t > 0) is almost in the well-prepared subspace &. This first point is only mentioned
to underline the importance of the invariance of £. Moreover, we underline the fact that we do not impose that the energy
E(t) is a constant or a decreasing function (nevertheless, E(t > 0) is bounded since (26) is supposed to be well-posed). Let us
also underline that g # Pq a priori. We would have q = Pq by imposing also the invariance of £*. At last, when F, = H + £,
(29) implies (21) since we have in that case § = Pq (£* is invariant) and 7|, = H (€ = KerL). Of course, when 7 = £, we have
q = Pq = Pq° and (29) implies

lg - Pql(t=0)=0M) = |q-Pq°|(t > 0)=OM). (30)

Let us now define a non-linear X scheme of Godunov type (X = Roe [1] for example) or not (X = kinetic scheme [20] for
example) applied to compressible Euler system (1) or to barotropic Euler system (6) on any mesh. Theorem 2.2 gives us a
simple and clear theoretical framework:

o firstly to understand (at least partly) on a Cartesian mesh the origin of the inaccuracy of the non-linear X scheme at low
Mach number by analyzing the first-order modified equation

3 XL/Mp _
{E)tq+]-‘x a=0 31)
q(t=0)=q
associated to the X scheme applied to the linear wave equation
L
q(t=0)=¢".

Indeed, estimate (29) is a necessary condition to be accurate at low Mach number. And, if sufficient condition (28) is not
satisfied for (31), estimate (29) may not be satisfied, which means that it may exist spurious waves characterized by the esti-
mate ||q — Pq||(Tq) > O(M), T4 being an acoustic time scale of order O(M). For example, we show in Section 4 that condition
(28) is not satisfied in 2D and 3D when F, := F¢4unorl/M (see point 2 of Lemma 4.2) and that there exists 2D and 3D initial
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conditions which create spurious waves (see point 2 of Proposition 4.1). As a consequence, any non-linear Godunov scheme

cannot be accurate at low Mach number. Let us underline that condition (28) concerns Eq. (31) that is linear. This means that

the origin of the inaccuracy of non-linear Godunov type schemes at low Mach number can be explained (at least partly) on a

Cartesian mesh with linear arguments and without any convection term (indeed, H = 0 in FSodunovL/My,

o secondly to propose a new non-linear X scheme - named low Mach X scheme in Section 5 (see Conjecture 5.1) - in such a
way condition (28) is satisfied for the new first-order modified equation

33
q(t=0)=q" (33)
associated to this low Mach X scheme applied to (32), although (28) is not satisfied for (31). When X is a Godunov type
scheme, we propose in Section 5 a simple modification of the X scheme to obtain such an operator F'o% Mech XI/M ‘We empha-
size that this modification can be applied to any colocated X scheme and on any mesh (see Conjecture 5.1). Numerical results
proposed in Section 7 show that these low Mach X schemes are stable and accurate at low Mach number when X = Roe [1] and
X = VFRoe [2,3] (see also Section 5.2 for a stability analysis of the linear low Mach Godunov scheme). Moreover, we show in
Section 5.5 that other colocated schemes of Godunov type [6-10,16-18] or not [12] that are accurate at low Mach number
are similar or identical to a low Mach X scheme when the Mach number goes to zero.

{ 0q + ]_-Low Mach X‘L/Mq -0,

Proof of Theorem 2.2: Estimate (27) is a direct consequence of the well-posedness of PDE (26). Let us now define q(t, x) solu-
tion of (26) with the initial condition G(t = 0,x) := q° — Pq°. By linearity, we have q = ¢ + q. Moreover

lg —Pqll = lqg— Pq+q—Pq|| = [lq — Pq]|

by using the invariance property (28). Then, we have

lg —Pql < lqll

since (1 — P) is an orthogonal projection. We conclude the proof by using again the well-posedness of (26) which implies
that ||g|| = O(M) when g°|| == [|¢° — P¢°| = O(M). O

2.5. Two additional conditions to obtain a good colocated low Mach scheme
Estimate (29) means that PDE (33) does not create any spurious wave. Nevertheless, it remains to verify a posteriori that:

o firstly, the new X scheme - whose first-order modified equation is given by (33) - is obtained from the original X scheme
in a simple way on any mesh;

o secondly, the energy in the well-prepared subspace ¢ (i.e. the incompressible energy) is not diffused with a time scale of
order M. Indeed, to be accurate at low Mach number, we need to control the energy in £* to avoid the creation of spurious
waves through estimate (29) but we need also to control the dissipation of the incompressible energy in the well-prepared
subspace €&.

The low Mach X schemes proposed in Conjecture 5.1 satisfy these two additional conditions. We will propose in Section 5.6
two other schemes whose first-order modified equations satisfy sufficient condition (28) but that do not satisfy the first or
the second additional condition. In Section 6, we will also propose a scheme whose first-order modified equation satisfies a
sufficient condition that is weaker than (28) but that does not satisfy the first additional condition.

3. Formal analysis of the Roe scheme at low Mach number on a Cartesian mesh

Some authors tried to give a formal analysis of the inaccuracy of Godunov type schemes at low Mach number [4,6-8,10].
All these formal analysis use an asymptotic expansion based on the Mach number. Although the formal analysis in [4,6,10]
allows to find the origin of the inaccuracy, its arguments seem to be inexact since they concern the 1D-case that, in fact, does
not suffer of any inaccuracy at low Mach number as it is underlined in [5] (see p. 362 in [5]). We will justify this assertion
with formal arguments in this section and with theoretical arguments in Section 4. In [8], the formal analysis is more accu-
rate. Nevertheless, the importance of the space dimension is not clearly underlined since the inaccuracy of the Godunov type
scheme is explained with an analysis of a 1D-Riemann problem applied to a perfect gas at low Mach number. In [7], the inac-
curacy is studied in the case of the Roe scheme [1] with 2D arguments (see lemma 3.1 and proposition 3.1 p. 72-73 in [7]).
Here, we will propose a formal analysis in the case of the 2D Roe scheme when the mesh is Cartesian. This analysis is more
accurate than the one proposed in [4,6,10] and is more simple than the one proposed in [7,8]. Let us note that the particular
case of triangular (or tetrahedral) mesh is mentioned in Section 5.8. Thus, in this section, we firstly recall the formal approach
proposed in [6,10] and we clearly underline its defaults. Secondly, we propose a formal approach that clearly takes into ac-
count the space dimension and we also discuss about the 1D-formal analysis proposed in [4,8]. This formal approach may be
seen as an introduction to the theoretical approach proposed in Section 4.
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In the sequel, the mesh is a 2D Cartesian mesh. The subscript (i,j) defines the center of each cell of the Cartesian mesh,
(i+1/2,j) and (i,j +£1/2) defining the interfaces of the cell (i, j). Moreover, Ax, is the space step in the direction x;
(k € {1,2}). The formal arguments proposed below would be identical for a 3D Cartesian mesh.

3.1. A first formal approach
We show in this subsection why the argument proposed in [6,10] to justify the inaccuracy of Godunov type schemes is

not correct although it allows to find the origin of the inaccuracy. The Roe scheme [1] applied to compressible Euler system
(1) (written with physical dimensions) on a 2D Cartesian mesh is given by

F‘li‘lZ.'_F‘li—‘lz' F2.f'12_F2.l“—12
dyy.. JH1/2 i-1/2§ J+1/ i-1/2 _
U+ R R 0, s
Ui(t=0)= U?J
where
Fi(Usj) + FiUsy) 1
Fiipj= 1) 5 1(Uin1)) *E‘Al (Uis12)|(Uis1j — Uiy), (a) 55)
F U,'" + F Ui_' 1
Faijip = 2(0) 5 2(Uiger) =5 A2(Uiji12)|(Uijir = Uig). (D)

A (U) = %(U)(k € {1,2}). The quantities Ui ,,; and Uiﬁl/;‘are defined with the Roe average. This average is given in [1]

for a perfect gas and in [25] for any equation of state p(p, ¢) (which admits an entropy). Nevertheless, as there are no shock
waves at low Mach number, we do not need to satisfy any property related, for example, to the preservation of a stationary
shock wave (this is a property that justifies the choice of the Roe average for compressible flows). Thus, for the sake of sim-
plicity, we can suppose for example that Ui, := (Ujj + Uis1)/2 and Ujji1)2 :== (Uij + Uiji1)/2. This choice does not change
formulae (35) and formulae (37) and (38) below. The important point is just to note that we have
O(||Uis1,2411) = O(IUi) = O(||Usz4ll) (1| - || is the I*-norm) for any choice of the average because of the regularity of the solu-
tion at low Mach number. This means that we can define a global Mach number M such that

W(i.j) - O(H“iﬂm‘l\) _ O(H“mw\\) _ O(ll?‘JH) Ml (36)

QAiy1/2 Qij12 ij

We will use this property below to analyse the different orders of magnitude of the Roe scheme. When the flow is subsonic
(i.e. |luit1)24]l < @is12;), formula (35)(a) may be written with [5]

ul,i+1/2.j >0: Fl,i+1/2.j = .7:1(U,‘) -+ (U] — a)m/z_j . (AU)i:rl/Z‘/’v (37)
Uiy <0 Friapg=F1(Uia) — (U1 + Q)iq - (AU)L/ZJ
knowing that
1
=+ paju] upta
AUYE, = L) .
( )l+1/2.j ( 2‘12 12 Uy (38)

Htwa/,,p;

with [f];, ;= fir1j — fij. In(38), H := E + p/p is the total enthalpy. Of course, we have symmetric formulae for F;j,1/>. Let us
now define p;.;,, := (PU? +P);, 12 — (PU);,1) - Uisa2. We deduce from (37) that for any 1D subsonic flow

D alu u
Uip12 > 0: Py = % - ('02[ ]> + pili(Uj — Uip12) — (%([P] - pa[u])) :
i+1/2 i+1/2 (39)
i +Di alu u
Uip1j2 SO0 :piyyfp = % - <’0TH> + Piq Ui (Ui — Uiga2) — (%([p] + pa[u]))
i+1/2 i+1/2
Thus, by noting M, := <M> and by replacing (pa[u}) with <p|u\[u]> , We obtain
a /i1 2 Jiap 2M Jiap
Pi +Pin (Plu\[u]>
Disip = - +oee (40)
i+1/2 2 2M 12

By using (36), we can say that M;,1» < 1. In [10], the inaccuracy of the Roe scheme is explained by noting that

<p|u\[u]> — +oo when Mi1 — 0", (41)
2M i+1/2
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Indeed, (41) seems to show that the pressure p;,;, deviates dramatically from the arithmetic average of p; and p;,; when
Mj;1» — 07.1In [6], the proposed argument is equivalent to (41) (see (12) in [6]). Thus, it is proposed in [10] to correct the Roe
scheme by replacing fluxes (35) in (34) with the corrected fluxes

0
corrected (pa) 1/2j [U]]
Fii3g = Friviag + % 0
0o/ ...
0 i+1/2j (42)
ted (PDijapp | O
FY7 = Faijigs + T2 | ]
0 /iy

The Roe scheme with pressure correction (42) gives good numerical results. Let us note that the pressure correction could
be applied to any Godunov type scheme. Nevertheless, (41) is not correct and, thus, does not justify the correction (42): in-
deed, (41) does not take into account the fact that |pau| < p at low Mach number since O(p) = O(pa?). Thus, (41) should be
replaced by

(%) 1/2 < % when  Mi.12 — 0" (43)
i+

Moreover, the previous formal analysis (partly inspired from [6,10]) does not take into account the space dimension since
it is an 1D analysis (1D arguments are also used in [4,8,26]): we will see in the sequel that the space dimension is essential to
analyse Godunov type schemes at low Mach number from a formal or theoretical point of view.

3.2. A more precise formal approach: importance of the space dimension

We propose in this subsection another formal approach that is more precise than the one proposed in [6,10]. This formal
approach is similar to the one proposed in [4,8]. Nevertheless, it is more precise since we clearly underline that the space
dimension is essential to formally analyse the Roe scheme, which is not the case in [4,8] (as in [6,10], 1D arguments are used
in [4,8]). Moreover, the proposed formal analysis is more simple and general than the one proposed in [8]. Indeed, firstly, the
formal approach in [8] is based on an explicit resolution of a 1D-Riemann problem and, secondly, it supposes that the fluid is
a perfect gas. Here, we do not solve such 1D-Riemann problem and the arguments are correct for any admissible equation of
state. The dimensionless version of (39) is given by

-+ Dsi aju u
Uiz > 0: P p = P me - M<p2[ ]> + M pjui(u; — Uiy ) — M(% (Ip] = MP“[“]))
i+1/2 i+1/2 (44)
;D au u
Uiy1)2 <0: pi+1/2 = Pi 2pl+1 — M(pz[ }> + szi+1ui+1 (ui+1 - ui+l/2) - M<|27a([p] + Mpa[“]))
i+1/2

i+1/2
with now p; ., := (M pu? +D)ii1a — Mz(,ou)M/2 - Ui;12. Thus, at low Mach number, we have

4+ D; alu u
poap =P m(P)  M(Gip)  someay. (45)
i+1/2 i1/2

Let us note that (45) is compatible with (43) and not with (41) (we emphasize that u in (45) is dimensionless which is not
the case in (41) and (43); on the other hand, the Mach number M in (45) is of the same order as the Mach number Mj.,, in
(41) and (43) because of (36)). Let us suppose that the initial conditions are well-prepared in the sense of (5). Thus, we have
M M[p])m/2 = O(M®Ax). Moreover, in 1D, V - it = 0 is equivalent to zi(x) = C*': in that case, [uliy1,, = O(MAX). This means

2a
that
M(M) — O(M2AX). (46)
2 i+1/2
Thus, (45) coupled to (5) means that
Pistj2(t = 0) = p, + O(MPAX) + O(M?). (47)
Then, because of the pressure gradient Vp/M? in momentum equation (1)(b), the 1D velocity field should be such that
d
(0 = 0(Ax) + 0(1) (48)

where O(Ax) + O(1) is a (discrete) non-constant field. Then, we have
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u;(At) = U; + O(M) + At[O(AX) + O(1)] + O(At?)
when At < 1. And when At = 7, with 7, = O(M) (7, is an acoustic time scale), we may formally write that
Ui(Tqec) = U + O(MAX) + O(M) (49)
where O(MAXx) + O(M) is a (discrete) non-constant velocity field. In that case, the 1D pressure field should be such that
Pi(Tac) = P, + O(M?AX) + O(M?) (50)

by using (2)(c). In [4], it is abruptly written that in1D, the pressure field satisfies p;(t > 0) = p x +O(M) (see Eq. (30) in [4]):
this estimate is in contradiction with (50). In [8], the analysis of the 1D-Riemann problem for a perfect gas leads to an equa-
tion similar to (45) (see Eq. (43) in [8]). Nevertheless, as in [4], it is deduced from the 1D analysis that “Godunov solver con-
tains, after one time step, acoustic pressure waves of order M that are much larger than the pressure fluctuations due to the
incompressible component” (cf. p. 666 in [8]). Numerical results are also proposed in 1D to justify this assertion (cf. Fig. 4
p. 667 in [8]). These numerical results are correct. Nevertheless, they cannot justify the existence of the inaccuracy of Godu-
nov type schemes at low Mach number. Indeed, the initial condition used to obtain the 1D numerical results in [8] is not
well-prepared since the initial velocity field has a fluctuation of order 1 and not of order M. As a consequence, in (45),
M (%[”]) = O(MAX) instead of (46). In that case, estimate (50) induced by any 1D well-prepared initial condition should

be replaced by the estimate p;(tq) = p * +O(MAXx) (see below the 2D case for the details). In fact, the formal analysis in [4,8]
cannot be satisfactory because, as in [6,10], they use 1D arguments (an 1D argument is also used in [26]: see estimate (11) in
[26]). As a consequence, any divergence-free field is trivial and it is impossible to clearly understand the origin of the inac-
curacy of Godunov type schemes at low Mach number. Thus, even for a formal analysis, we have to take into account the
dimension of the space to analyse the inaccuracy of Godunov type schemes at low Mach number.

The 2D version of (45) is given by

Dij + Diy1; afu u
Dis1j2j = P _ M<p g d) - M(% [p}) + O(M?Ax),
i+1/2y i+1/2
Pijr12 = By 2p”” - M(paéuﬂ) - M(% [P]) + O(M?Ax)
ij+1/2 ij+1/2
(for the sake of simplicity, we choose Ax; = Ax, := Ax) with

2 2

{Pmm = (MPpUF + )15 — M (U111 /25 - Unis 24
2 2

Piji1y2 := (M*pu3 +D)ijr12 — MA(PU2)i511 2 - Unijr e

In 2D, V - U = 0 is not equivalent to ii(x) = C*. Thus, when the initial conditions are well-prepared in the sense of (5), we
have a priori

(51)

M(M> o O(MAX),

2
(32)
M<—'0 a[”2}> — O(MAX).
2 ij+1/2
We deduce from (51) and (52) that the 2D version of (47) should be such that
{pi+1/2.]'(t =0) =p. + O(MAX) + O(M?), (a) (53)
Dijir2(t =0) = p, + O(MAX) + O(M?)  (b).

Thus, the 2D version of the 1D estimate (48) is given by

d AX
auu(t) = O<M> + O(])
where O(%) + O(1) is a (discrete) non-divergence-free field. As a consequence, the 2D version of the 1D estimate (49) is now
given by

Uij(Tac) = Uij + O(AX) + O(M) (54)
(with again 7, = O(M)) where O(Ax) + O(M) is a non-divergence-free field, although u;;(t = 0) = i;; + O(M). In that case,
the 2D pressure field should be

Pij(Tac) = p. + O(MAx) + O(M?) (35)

although p;;(t =0) = p, + O(M?). The velocity field O(Ax) in (54) and the pressure perturbation O(MAx) in (55) are spurious
waves that make impossible the convergence when M — 0 (with a given Ax) of a 2D (or 3D) discrete compressible solution
toward a 2D (or 3D) discrete incompressible solution when compressible Euler system (1) is discretized with a Roe scheme.
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Indeed, Theorem 2.1 and Proposition 2.1 underline that a compressible flow converges toward an incompressible flow at low
Mach number if and only if the initial conditions are well-prepared in the sense of (5). More precisely, any O(1) (or O(Ax) at
the discrete level) velocity fluctuation that is a non-divergence-free field induces a O(M) (or O(MAX)) pressure fluctuation,
and vice versa. On the other hand, estimates (54) and (55) seem to say that when the mesh is such that Ax = O(M), there are
no spurious waves: of course, the condition Ax = O(M) is impracticable in 2D (or 3D) geometry when M — 0. In a way, we
can say that the compressible Godunov scheme converges to an incompressible colocated scheme under the consistency con-
dition Ax = O(M). At the opposite, estimates (49) and (50) show that the 1D Roe scheme should not create any spurious
waves as soon as the initial conditions are well-prepared in the sense of (5): as a consequence, the 1D Roe scheme should
not suffer of any particular inaccuracy when the Mach number goes to zero.
Finally, let us note that estimates (49) and (50) mean that

19 = Pqll(Tac) = OM) (56)
at the discrete level where q := (r,u)” with r defined by (18). In the same way, estimates (54) and (55) mean that

19 = Pqll(Tac) > O(M) (57)
at the discrete level when Ax > O(M). In Section 4, we will clearly justify in the linear case from a theoretical point of view
estimates (56) and (57): see estimates (65) and (66) in Proposition 4.1.
4. Analysis with the linear wave equation

We now analyse the inaccuracy of Godunov type schemes at low Mach number with the approach proposed in Section 2.4
by studying the linear wave equation

L
{0‘“1\/1‘1:0’ (58)
a(t=0.% = ¢°(x

solved on Q = T9{123) with the Godunov scheme (in the linear case, all Godunov type schemes are identical). We recall that
(58) satisfies the estimate

lg—Pqll(t=0)=0M) = |[q-Pq|(t=>0)=0M) (39)
(see point 2 of Theorem 2.2). This linear approach will justify the formal approach proposed in Section 3.2.
4.1. The Godunov scheme and its first-order modified equation

The Godunov scheme applied to linear wave equation (58) on a 2D Cartesian mesh is given by

dpoy A (Uivrj — Uriay | Uzijen — Uaija _ a.  (Tinj— 2rij+ricqj n Tijy1 — 21 + Tija
att T M 2AX4 2Ax; 2M AXq AX, ’
a, Tij—Tioyy Qe Uy — 2Unj + Upiog
d . S Titlyj i-1j U« 1i+1y 1, 1,i-1j 60
u . = .
aii Ty T oA, 2M Ay ’ (60)
dy @ Ty —Tijo1 . G Upjjer — 2Upij + Upjj 1
au;,_j +—- = . .
M 2A%; 2M Ax;
We recall that q := Z where r is the pressure perturbation defined with (18). For the sake of simplicity, we suppose in the

sequel that Vk : Ax, = Ax. Thus, the first-order modified equation associated to (60) is given by

L
{&q +479=Bed, (61)
q(t=0,x) = q°(x)

with
aﬁ: v, 0 0
Bigq=K| # | and K=|0 v, O (62)
Py 0 0 w,

X2

where v, = Vy, = Vium := @, 5% (Vaum is the numerical viscosity). Let us note that in 3D, the diffusive term (62) is defined with
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Ar
2y v O 0 0
o 0 v 0 0
Bg=K| » d K= ‘“ 63
«q o an 0 0 v, O (63)
Py 0 0 0 v,
ox2

(Ar in (62) and (63) is the Laplacian operator applied to r, and Ax in vy, is a strictly positive constant). In the sequel, we
define the velocity viscosity v, := (Vu,, ..., Vy,) € R? (d € {1,2,3}). An interesting question is to verify if estimate (59) is still
valid when linear wave equation (58) is replaced by first-order modified Eq. (61) whose diffusive term (62) or (63) is non-
isotropic a priori.

4.2. Influence of the non-isotropic diffusive term

We have the following result:

Proposition 4.1. Let q(t,x) be solution of

L
q(t =0,x) = q°(x)
on Q = 79123} Then:

(1) when @ = T%' : VK > 0, we have

lg—Pql(t=0)=0M) = |lg—Pq|(t > 0)=0OM); (65)
(2) when @ = T%®3% and Ax > O(M) : VK > 0 such that |v,| = O(%5), we have

3g° € (L2(T9))™ such that |jg—Pq||(t=0)=0OM) and ||q— Pq|/(Te) > OM) (66)

where 7, = O M:T“ (L« is a characteristic length of T¢ of order one and 7, is an acoustic time scale). Nevertheless, when

Ax = O(M), || ~ Pq||(Tec) = O(M).

To summarize, estimate (65) is satisfied in 1D, and is not satisfied in 2D and in 3D when Ax > O(M) and when
[Vu| = O(%%) because of the loss of invariance of the well-prepared subspace £ (see point 2 of Lemma 4.2). This loss of invari-
ance is due to the fact that B, is a non-isotropic operator in 2D (and 3D). This result explains clearly (at least when the mesh
is Cartesian) why 2D (and 3D) Godunov type schemes are not accurate at low Mach number in the non-linear case and why it
is the numerical viscosity on momentum equation (1)(b) that is responsible for this inaccuracy, and not the numerical viscosity on
mass and energy equations (1)(a,c). Let us note that relation (68) shows that the acoustic energy E(t) in the acoustic subspace
& goes to zero when t = O(1), v, = vy, = %5 and M < 1. Nevertheless, when the domain € is not periodic, boundary con-
ditions can continuously inject energy in &. In that case, the energy transfer from £ to £ may not converge to zero and Eq(t)
may be of order 1 when t = O(1). These statements underline that the inaccuracy of non-linear Godunov type schemes at low
Mach number can be explained at least partly with linear arguments and without the convection operator H in (11) i.e. without
the convection operator u - V in (1), and, thus, without the notion of shear waves. Nevertheless, non-linearities can amplify this
inaccuracy (see also the discussion about non-linear system (84) that follows Conjecture 5.1). Moreover, the boundary con-
ditions can also contribute to the loss of invariance of the well-prepared subspace £ and, thus, to the inaccuracy at low Mach
number (see Section 7.2.2).

The proof of Proposition 4.1 uses two lemmas that correspond respectively to Lemmas 2.2 and 2.3 adapted to the case of
linear equation (64). The first one is given by:

Lemma 4.1. Let q(t,x) be solution of (64) on Q = T%{123} Then:

VK >0: Et>0)<Et=0).

The second one is given by:

Lemma 4.2. For any K, we have:

(1) when Q = T%': the subspaces € and &* are invariant for Eq. (64);
(2) when Q = T93}: the subspace £ is invariant for Eq. (64) if and only if v, = 0;
(3) when Q = T9®3}; the subspace £* is invariant for Eq. (64) if and only if v, = 0.
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Let us underline that the important point of Lemma 4.2 concerns the loss of invariance of £ in 2D or 3D when v, # 0. The
fact that £* is not invariant when v, # 0 is not an important point (see Section 2.4). Lemma 4.2 shows also that the 1D-case
and the 2D(or 3D)-case are very different: this difference is due to the fact that, when v, # 0, the velocity diffusive term in
(62) (or (63)) is isotropic if and only if the space dimension is equal to one. Let us also note that in 1D, £ is a trivial subspace
and £* is almost equal to (L*(T))?. Indeed, we have in 1D

E= {q = (;) € (I¥(T))? such that r(x) = C*" and u(x) = C“}.

Of course, this is not at all the case in 2D or 3D. This difference between the 1D-case and the 2D(or 3D)-case is also under-
lined by the structure of the kernel Ker (% — B,) with respect to v,:

Lemma 4.3. For any K > 0, we have:

(1) when Q = T%:

L
Ker <M — B,C> =¢;

(2) when Q = T%?3} and v, = 0:

L
Ker <M - B,C> =¢;

(3) when Q = T%23} and v,, > O(k € {1,...,d}):

Ker(% — BK> = {q = (;) e (L*(1))"** such that Vr = 0 and 9, u, = O} CE

Proof of Proposition 4.1:

e When Q = T%': Using Lemmas 4.1 and 4.2, point 1 is a direct consequence of point 2 of Theorem 2.2.
e When Q = T%{23 and v,; # 0: The subspace £ is not invariant (see point 2 of Lemma 4.2). Thus, we cannot apply point 2
of Theorem 2.2. Let us choose q° € & such that the kth Fourier component g2 of ¢° is given by
A 0
Q= % —ka | € &0 (67)
V kl + kZ k]
(see proof of Lemma 4.2 for the definition of &.9) with Ay € C, k := (ki,k2), ki := 14;/L;a € R and k; := y,/L ¢ € R knowing
Fhat O(\é‘kh =0(u) = O(W2|)2: O(Lya) = 1(Lya , is_a characteristic length of T¢). By using (73), we obtain that
qr(t) = ﬁ (O, —ky exp (—vulkl t),k] exp ( —Vu, k2t>) . Thus, we have

0
N A kik, [eXP (—vuz k§t> —exp (—vu1 kft)] ki

G (t) = —F—"
Rk Kk K

This implies that

13 2
Euci(t) = A —="2— [exp (—vi, Kit) — exp (v, k3t | (68)
(kl + kz)
where E,(t) is the kth Fourier component of the energy in the acoustic space £*. Let us choose t = T4 := %(rﬂc is an

a.

acoustic time scale) and let us suppose that |v,| = O(%4¥) which is equivalent to write that v,, = 7; %5* and v,, = 1 %2* with
O(4) +0(23) =1(41 = 0 and J; > 0). We have v, K3Tq = 4112 A% and Vi, I Tae = A2 2%, This implies that
T T

2 S 2 AX 2 AX\]?
Eac,k(fac) - ‘Al<| ('u% +ﬂ%)2 {eXp < ),1,111 Lﬂ) €xp ( A2 L-Ud):| . (69)
Equality (69) shows that it is possible to choose (u,, it,) of order one such that Eyc(Ta) = O(AX?). By using the Parseval’s
theorem, we obtain the estimate Eu(T.) = O(Ax?) that is to say ||q — Pql|(te) = O(Ax) although [|q — Pq||(t = 0) = 0. Let
us now define q° € & such that ¢? is given by (67) with |A,| = O(1): thus, by construction, we have ||§ — Pq||(Te) = O(AX)
where § is solution of (64) with the initial condition g°. Let us also define q° € £&* such that ||g°|| = O(M) and let us define
q° = @° + @°. Then, we have ||q° — Pq°|| = ||g°|| = O(M). Moreover, by linearity, we have q = g + g where g is solution of
(64) with the initial condition @° Since ||g°|| =O(M), we have also ||q— Pq|/(Te)=O(M). Thus, we obtain
g — Pqll(Tec) = O(AX) since |G — PG| (tac) = O(AX). O

It remains to prove Lemmas 4.1 and 4.2:
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Proof of Lemma 4.1: We have 4 ||q||*(t) = 2(q, B«q) since {q,Lq) =% ((r,V -u) + (Vr,u)) = 0. Thus, we obtain the result by
noting that

d
(9,Bxq) = - <Vr||Vf|2 ) vy, Iaxkul<||2> -0 (70)
k=1

Proof of Lemma 4.2: We study the 2D-case (the 3D-case is similar). As £ is invariant for the linear equation 9,q + L q = 0 (see
Lemma 2.3 with H = 0), we just study the invariance of £ for the equation

orq = By
{ tq hq7 o (7.1)
q(t =0,x) =q°(x).
In the Fourier space, PDE (71) is given by the ODE
d . .
{ Eqk = BK.qu7 (72)
Qk(t = 0) = q;()

where g (t) is the kth Fourier component of q(t,x) and where

vilk[* 0 0
Ba=—| 0 v,k 0
0 0 v,k

n (72), k := (k;, k,) is the wave number that belongs to an infinite discrete set K. The solution of (72) is given by
7 exp(—v,[[k|*t)

qu(t) = | 13, exp(—vy, ki) (73)
i3 exp(— Vv, k3t)

i 1 0 0
knowing that q9 = (ﬁﬁ"k). Moreover, q € £ if and only if Vk € K : g, € & where & := Vect{ (0), (1) , (0) } and

i, o) \o/ \1

0
Erro == Vect{ (k2> } Formula (73) shows that it is possible to find k € K and ¢ € & such that gi(t > 0) ¢ & when
k]

vy # 0. This proves that £ is not invariant in 2D when v, # 0. Of course, when v, = 0, formula (73) shows that £ is invariant

1 0
in 2D. By noting that q € £* if and only if Vk € K : §x € & where £, := Vect{0} and &, := Vect{ (0) , (kl ) } we show
0 kz
in the same way that £* is invariant in 2D if and only if v, = 0. Let us now study the 1D-case. In that case, formula (73) is
replaced by

) 7 exp(—vi[k|*t)
() = ( . ] (74)
U, exp(—vy, kit)
Moreover, we have &_o = &, = Vect{ <(1)>, <?) } and &y.o = &j_, = {0}. These relations allow to obtain that £ and & are

invariant in 1D for any (v,,v,) € R%. O

Proof of Lemma 4.3: When i = 0, we have B, = 0. Then, we have Ker (% — B,) = € in any spatial dimension since KerL = €.

We now suppose that £ > 0.

e When Q = T%":In 1D, we have g € £ = r = C" and u = C*. Thus Lq = B.q = O that is to say £ C Ker (& — By). Let us choose
q € Ker(& — Bi). When v, > 0 and v, > 0, by using the fact that (q, (£ — B<)q) = —(q, B«q) and relation (70), we obtain that
r=C"and u = C" that is to say q € £ When v, > 0 and v, = 0, we just obtain with (70) that r = C*'. Nevertheless, r = C*
and q € Ker (& — B,) imply that u = C*. Thus, we have also q € £. The case v, = 0 and v, > 0 is identical in 1D to the case
v, >0and v, =0.

e When Q = T9{3} and v, = 0: The proof is identical to the proof of the 1D-case by replacing u = C* with V- u = 0.

e When Q= T%®% and v, >0 (ke {1,...,d}): Let us choose q < Ker(L — B,). We deduce from (70) that Vr =0 and
Oy Ux = 0. Let us now suppose that q is such that Vr =0 and 9, ux = 0. In that case, we have q < £ (i.e. q € KerL) and
q € KerB, that is to say q € Ker(f — B.). O
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5. Construction of a class of colocated compressible schemes accurate at low Mach number

By using the results obtained in the linear case in Section 4, we now propose a large class of colocated schemes that may
be accurate at low Mach number on any mesh. This class is named low Mach X schemes and consists in a simple modification
of any X scheme of Godunov type (X € {Roe, VFRoe, ...}) or not (X = kinetic scheme [20] for example). We also show that
other colocated schemes accurate at low Mach number as, for example, the Roe-Turkel type schemes [7-9] or the
AUSM*-up scheme [12] are similar to a low Mach X scheme. We also underline that there exists a link between the proposed
low Mach Godunov scheme and a colocated incompressible scheme stabilized with a Brezzi-Pitkdranta type stabilization [21].

5.1. Construction of a linear low Mach Godunov scheme

It is the loss of invariance in 2D and 3D of the well-prepared subspace £ that is responsible for inaccuracy (66) of Godunov
scheme (60) applied to linear wave equation (58). This loss of invariance is induced by the fact that the velocity diffusive
term in (62) and (63) is non-isotropic when v, # 0. Thus, following point 2 of Lemma 4.2, it is natural to choose v, = 0 in
(62) and (63) to recover the invariance of £ in 2D and 3D, and, finally, to recover estimate (59) in 2D and 3D by using point
2 of Theorem 2.2. More precisely, we have:

Theorem 5.1. Let q(t,x) be solution of

8tq +£q = Vr(Ar)y
M 0 (75)
q(t=0,x) = q°(x)
on Q = T¥23), Then, Pq(t > 0) = Pq° and

vq® e (LT Wy, > 0: {Eac(t 50) <En(t—0).
This implies that:
W >20: [lg-Pql(t=0)=0M) = lq—Pq|(t > 0)=O0M). (76)
Let us note that, because of the pressure diffusive term in (75), we have |q — Pq||(t = 0) < ||q — Pq||(t = 0). Thus,

lg — Pql|(t = 0) = O(M) could be replaced by max;-ol|q — Pq||(t) = O(M) in (76). Of course, the numerical scheme, whose
first-order modified equation is given by (75) (when Vk : Ax, = Ax), is the following:

d a, (Ujrj—Urio1y | Uzijen — Ujij a, (Tipaj— 2T+ Ty | Tijo — 2T+ Tija
alis t g oM’ + '

M 2AX1 2AX2 T 2M AXq sz
Q. Tiyj —Tiay
%ul,iﬁrM'HéTﬁljzov (77)
. Tiji1 —Tij1
%HZJ.}' +M'%: 0.

For the sake of simplicity, linear scheme (77) is named low Mach Godunov scheme. In Section 5.2, we prove in the 1D-case
that the explicit scheme deduced from the explicit discretization of (77) satisfies the von Neumann stability condition under
a classical CFL criteria although there is numerical viscosity only on the pressure equation. We also prove in Section 5.2 that
the 1D implicit scheme satisfies the von Neumann stability condition without any CFL criteria. At last, we emphasize that
scheme (77) satisfies the two additional conditions introduced in Section 2.5.

5.2. Stability analysis of the 1D linear low Mach Godunov scheme

We now prove that scheme (77) written in 1D satisfies the von Neumann necessary condition for L? stability [27] when
we discretize the time derivatives with an explicit or implicit first-order time scheme. For the explicit scheme, we have the
following result:

Lemma 5.1. Let us define the explicit scheme

-1y +& ] ui, —ul, K &,r?ﬂ -2 41y
— vr ’
R 78)
Ui U G T Tl G Uiy TSl U
At M 2Ax “2M Ax

with periodic boundary conditions. Then:

(1) when K, € R and K, = k,: the von Neumann condition is satisfied under the CFL condition
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At < M min(x;, K;l);ﬂ; (79)
(2) when k, € R} and x, = 0: the von Neumann condition is satisfied under the CFL condition
. Kr o\ Ax
< = —.
At\Mmm<2,1cr )a* (80)

Let us note that CFL condition (79) is optimal when x;, = 1: this corresponds to the linear Godunov scheme. For the implicit
scheme, we obtain the following result:

Lemma 5.2. Let us define the implicit scheme

n+1 n+1 n+1 n+1 n+1 n+1
L i S o, e T = 2+l
At M 2Ax "2M Ax ' (81)
n+1 n+1 n+1 n+1 n+1 n+1
ut - LTS W W 1Y 2u +ul
At M 2Ax “2M Ax

with periodic boundary conditions. Then, for any At > 0, when k, € R and x, = K, or Kk, = 0, the von Neumann condition is
satisfied.

The proof of Lemmas 5.1 and 5.2 are given in Appendix B. These lemmas show that the numerical viscosity on the velocity
equation should not be essential to preserve the L? stability as soon as the numerical viscosity on the pressure equation is
strictly positive: the numerical results proposed in Section 7 justify this assertion. We emphasize that the von Neumann con-
dition is not sufficient a priori to obtain the L? stability (see the Kreiss matrix theorem in [27], p. 74). Nevertheless, it is pos-
sible to prove that the von Neumann condition is in fact necessary and sufficient for the explicit and implicit schemes when
K € R" and x, = K, and, thus, for the Godunov scheme (see the remark at the end of Appendix B). But, when %, € R/ and
Ky = 0 and, thus, for the low Mach Godunov scheme, it seems to be more difficult to obtain a similar result. Nevertheless, in
the 1D semi-discrete case, it is possible to obtain the L? stability when x, € R* and x, = 0 with an energy method [28].

5.3. Construction of non-linear colocated low Mach schemes on any mesh

The arguments used to build linear scheme (77) on a Cartesian mesh incite us to write that a good colocated non-linear X
scheme of Godunov type (X = Roe [1] for example) or not (X = kinetic scheme [20] for example) is one for which the first-or-
der modified equation associated to the linearized X scheme without convection preserves the well-prepared subspace £. We
see in Theorem 5.1 that a simple way to obtain such a property on a Cartesian mesh is to center the discretization of the
pressure gradient. Moreover, the stability results of Lemmas 5.1 and 5.2 do not prohibit to apply this idea. Thus, we propose
the following Conjecture for the non-linear case on any mesh:

Conjecture 5.1. Let X be a colocated scheme of Godunov type or not applied to compressible Euler system (1) or to barotropic
Euler system (6) on any 2D (or 3D) mesh. We suppose that the X scheme is stable at low Mach number. Let us modify the X scheme
in using the central difference:

(1) to discretize the momentum flux;
(2) or to discretize only the pressure gradient in the momentum flux when it is possible (X = VFRoe [2,3,8,9] or X = FDS [29,30]
for example).

Then, at low Mach number:

(i) the modified X scheme remains stable;
(ii) the modified X scheme does not create any spurious wave and is accurate at low Mach number.

This modified X scheme is named “low Mach X scheme”.

Let us underline that the modification applied to a X scheme to obtain a low Mach X scheme is simple and may be applied on
any mesh (i.e. not only on a Cartesian mesh: see the discussion in Section 5.8, and the numerical results in Sections 7.1.2 and
7.2.2). Moreover, the incompressible energy is constant when q(t, x) is solution of (75). This means that a low Mach Godunov
scheme should diffuse the incompressible energy at a time scale of order 1 (here, X is a Godunov type scheme). Finally, we can
say that low Mach Godunov schemes proposed in Conjecture 5.1 satisfy the two additional conditions introduced in Sec-
tion 2.5. Let us also underline that Conjecture 5.1 is also written for colocated X schemes that are not of Godunov type.

It is important to note that Conjecture 5.1 should also be valid by adding a pressure term of order O(M?Ax) (see the case of
the linear Roe-Turkel scheme in Section 5.5.1 and the case of the AUSM*-up scheme in Section 5.5.2). Indeed, on a Cartesian
mesh, the 2D scheme
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Div1j — Pi1j
(Vp)discrete . _ 20% + O(M*Ax) (82)
1 ’ Diji1 — Dij
2AX;

is equivalent to the 2D scheme

Tiv1j —Tio1j
2AX4
Tiji1 —Tij-1
2AX;
because of (18) (with O(Ax;) = O(Ax;) := Ax). And, if the central difference used to discretize Vr in linear low Mach Godunov
scheme (77) is replaced by scheme (83), we may think that estimate (29) remains valid for first-order modified Eq. (26) asso-
ciated to (83) (at least when t € [0, 7] Where 7, = O(M)). In Section 6, we try to give a possible theoretical framework to
justify schemes of type (83) (and, thus, of type (82)). In the sequel, we will say that a scheme verifying (83) (and, thus,
(82)) is similar to a low Mach X scheme. At last, to justify Conjecture 5.1 with theoretical arguments in the non-linear case
and when the mesh is Cartesian, we should prove that when we replace non-linear system (11) with the non-linear system

(Vr)feree .= + O(MAX) (83)

{ oq +H(q) + % (@) = Byg, (84)
q(t=0,x) = q°(x)

with #H(q) := 0 or H(q) given by (9)(b), with £ (q) given by (9)(c) and with B.q given by (62) or (63), Theorem 2.1 remains true
in 1D but remains true in 2D or 3D if and only if the velocity numerical viscosity v, is equal to zero in (62) or (63). This result
would be the non-linear version of Proposition 4.1 and of Theorem 5.1. We do not study this difficult non-linear problem in
this paper.

5.4. Application to the non-linear Roe and VFRoe schemes

To simplify the notations, we suppose that the geometry is 2D. The low Mach Roe scheme on a 2D Cartesian mesh is de-
fined with (34) and (35) by replacing in (35) the matrix
i1 Gz (13 Oig

Q1 Oz 023 G4

A (U)| = 85
A 31 (3 033 O3 (83)
Q41 Q42 Q43 Q44
with
i1 Gz 413 Oig
~ 0O 0 0 O
A(U)] := . 86
G (86)
a41 Q42 Q43 Cag
In the case of the VFRoe scheme [2,3] on a 2D Cartesian mesh, the fluxes are defined with
FUH/ZJ =F (Uzi+1/2j)7 87)
Faijrip = Fa(Uijiq 1)

where Fi(U) (k € {1,2}) are the fluxes of compressible Euler system (1), and where U}, ,; and U;;., , are solutions of a lin-
earized Riemann problem. Thus, the low Mach VFRoe scheme is defined by replacing (87) with

pru Py
prui +p” pusls;
Fiivipj= and Fyjji1p0 =
1172 pruius 2ij+1/2 prut +p* (88)
(P'E +D0)U1 /) 1110 (P'E +p)u5/ i1
where

w _PijtDin,

Pitappy = 5 )
o PijtPijn

Pijy1p = 3

the quantities (p*, uj, u5, E",p*);.5; and (p*, uj, u3, E*,p*);;,, , being deduced from Uy, ,; and Uy, 5.
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The low Mach VFRoe scheme should be more robust than the low Mach Roe scheme. Indeed, the low Mach VFRoe scheme
keeps the upwinding of the discretization of V-(pu®u) (see point 2 of Conjecture 5.1); at the opposite,
the low Mach Roe scheme removes any upwinding on the discrete velocity equation (see point 1 of Conjecture 5.1).

5.5. Links between low Mach X schemes and other colocated schemes accurate at low Mach number

We now prove that colocated low Mach schemes previously proposed in the literature are similar or identical to the low
Mach X scheme proposed in Conjecture 5.1.

5.5.1. Links with the Roe-Turkel scheme and with the Roe scheme with pressure correction in the linear case
We have the following result whose proof is in Appendix C:

Proposition 5.1. When wave equation (58) is solved on a 2D Cartesian mesh with Vk : Ax, = Ax:

(1) the first-order modified equation associated to the Roe-Turkel scheme is given by (61) with

Ar/M?
2 Ar/M
B 7BRoe—Turkel —q & % —a _X é + O(M) ; (89)
xq = By q:=0a.~ 2"1 = %oM ’
0 u
%5

(2) the first-order modified equation associated to the Roe scheme with pressure correction is given by (61) with

Ax Ar
BK;q — BE.I'CSSUFE corr.q = a* m g . (90)

Proposition 5.1 - that may be written in 3D - justifies the Roe-Turkel scheme and the Roe scheme with pressure correc-
tion. Indeed, this proposition shows that the linear Roe scheme with pressure correction is identical to the linear low Mach
Godunov scheme; it also shows that the linear Roe-Turkel scheme is similar to the linear low Mach Godunov scheme since (89)
implies that the pressure gradient Vr is discretized with (83). Moreover, the pressure numerical viscosity in (89) is of order

~2: this explains why the Roe-Turkel scheme has to be implicited even when the time step is of order MAx (acoustic time
scale) More precisely, (89) shows that an explicit Roe Turkel scheme should have a time step of order M-4* M A : this point is jus-
tified by point 2 of Lemma 5.1 by choosing , = M~' and M < 1 in CFL condition (80). At the opposite, Lemma 5.2 shows that
the implicit Roe-Turkel scheme should be stable without any CFL condition. These stability results are compatible with the
stability analysis of Roe-Turkel scheme applied to system (1) proposed in [31]. At last, let us underline that point 2 of Prop-
osition 5.1 coupled to point 2 of Lemma 5.1 underlines that, contrary to what it is written in [5] (see Section 4.2 in [5]), it is a
priori possible to propose an explicit Godunov type scheme accurate at low Mach number that is stable with a time step of
order MAx,

5.5.2. Formal links with other non-linear colocated schemes
The non-linear AUSM*-up scheme [12] is a flux splitting type scheme whose 2D numerical flux written in physical dimen-
sion is given by (in the x; direction)

0

. . __ pconvection pi+1/2.j
Fiinpg=Fihs; +

0

where Fﬁ",‘l"ff;j"" is an upwind discretization of the convective flux (pu;, pu3, puuz, pu;H)" (H := E + p/p is the total enthalpy)
and where p;,, »; is an estimation of the pressure at the interface (i + 1/2,j) of the 2D Cartesian mesh. For a subsonic flow,
the AUSM*-up scheme is defined with

Div125 = P (Mij)pij + P~ (Mi1)Piy15 + Dy (91)
(see formula (75) in [12]) knowing that

P(m)* %(mi]) (2Fm)£amm? —1)%, (a)

Pu KuP" (Mij)P~ (Mis1) (05 + Py jMabivij2j(Uicay — wij), (b) (92)
= %( 4+5f7), (©)

f M(2 - M) (d)
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o M7+ M?
2

Ui pgp,, ;= Histi Qis12j = 0(%) and M? = ’“j>. When p, := 0 in (91) and

)

Ai125’ s Qir1/2
o :=3/16 in (92)(a), the AUSM"-up scheme is the AUSM" scheme tested in [12,32]; when p, :=0 in (91) and o :=0 in
(92)(a), the AUSM*-up scheme is the AUSM scheme proposed in [33]. By using (92)(a), it is easy to obtain that

where K, € [0,1],M;; =

P(m)* :%:t <%+<x)m+(9(m3). (93)

Thus, when o is defined with (92)(c), we obtain P(m)* =1+ O(mM?) + O(m?) (we use f2 = O(M?)). Since p, defined with
(92)(b) is of the order of O<MM> x O(pa?) (we use f, = O(M) and K, = O(1)), we obtain

Ait1/24
Pij + Pirj
Div1p2j = = 5 Bl (9<1V1

_DijtDiny
2

Uir1j — Uij

)-0a) +o0) (@

Qi1/2

+ O(M?Ax) - O(pa®) + O(M?) (b) (94)

=Pl omeax) + o) (©)

by using (91) (we recall that p = O(pa?)). We finally obtain
Dic1j2j =P, + O(M*AX) + O(M?) (95)

when the initial conditions are well-prepared in the sense of (5). Estimate (95) is identical to estimate (47) obtained for the
1D Roe scheme. Estimate (94)(a) shows that the AUSM*-up scheme is similar to a low Mach X scheme since (94)(a) gives an
approximation of type (82) for the pressure gradient Vp. Nevertheless, when o = 3/16 (AUSM" scheme) or o = 0 (AUSM
scheme) for example, formula (93) shows that P(m)* =1+ Cm + O(m*) where C = O(1). This implies that
Dij + Pis1j
Pty =g+ O(Mi = My j) + O(M*Ax) + O(M?)

instead of (94)(c) (with p, given by (92)(b) or equal to zero). Thus, since O(M;; — Mi;1;) = O(MAx) in 2D (or 3D), we obtain
for the 2D (or 3D) AUSM" and AUSM schemes

Pic1j2j = P. + O(MAx) + O(M?) (96)

when the initial conditions are well-prepared in the sense of (5). Estimate (96) is exactly estimate (53)(a) obtained for the 2D
Roe scheme. Estimates (95) and (96) explain respectively why at low Mach number, the AUSM*-up scheme should be accu-
rate and why the AUSM* scheme (tested in [12,32]) and the AUSM scheme should not be accurate in 2D (or 3D) (when
Ax > O(M)): see Fig. 20 in [12]. Nevertheless, the previous estimates show also that the AUSM" scheme should be accurate
at low Mach number when o = —3/4 + O(M) in (92)(a): this condition is identical to condition (54) in [12]. Of course, (92)(c)
satisfies this condition.

Moreover, when the flow is subsonic and when the fluid is a perfect gas, the colocated scheme proposed in [18] is
given by

Fl,i+1/2.j _ 1ij 5 1i+1j n F??T]./gljfuswn (97)
with
Piv1j — Pij

Piprthiivy — Pijlhiij
Piq1jU2ir1j — PijUzij
V(Pi1 iy — pijEij)

where y = O(1) is the adiabatic constant of perfect gases (see formulae (2), (3), (10) in [18]). This scheme is accurate at low
Mach number. By noting that yE = H + O(M?) for a perfect gas at low Mach number, we see that (97) and (98) is exactly a low
Mach X scheme where the convective flux (pu;, pu2, pusu,, pu;H)" is discretized with an upwind fashion. In [16,17],
F?};Tl‘c/"szF‘S‘°‘l is not exactly (98) but the pressure gradient is also discretized with a central difference.

To summarize, we can say that the AUSM*-up scheme [12] and the colocated schemes proposed in [16-18] are respec-

tively similar and identical to a low Mach X scheme.

Fhum. diffusion __ 1 Us .
1,i+1/2j = —i\ :+1/2.j\

(98)

5.6. Two other colocated schemes that do not create any spurious wave

Let us define the 2D system (the 3D-case is similar)

L
{ 94 + 7379 = Buy 109: (99)
q(t =0,x) = ¢°(x)
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where
Ar Ar
821,11 02u2 (92111 I 62”1 A A
My 2 7 2 2 Hy r 7 r
By 1,4 =5 ox;  OxiXy | + 22| o3 ox5 | =1L < ) L2z < > (100)
X 2M 2M 2M . 2M \ A
82u1 82112 821.[2 82u2 VV-u u
OX1Xy  OX3 X3 ox3

with (i, f) €R* x R*.  We have  &E(t)= & (|Vr|® + |V -u®) & (IVr|® + |[Vu|>) <O and  &(|Vr|*+
IV -ul)? = —%(HNHZ + |VV - u)|?) < 0. These inequalities show that the linear operator

P LA (S
(NN qo'_)'Af-lh-,Hz qo — q(a )

associated to (99) and (100) is a contraction and that A, ,,& C £. Thus, we can apply point 2 of Theorem 2.2 and (29) is
satisfied. Let us choose (u;, 1t,) = (a.Ax, 0). Since Ker(£ — B, o) = £ as for first-order modified Eq. (75) (see point 2 of Lemma
4.3), it should be possible to propose another class of low Mach Godunov schemes that do not create any spurious wave and
that do not diffuse the incompressible energy at a time scale or order M by adding to fluxes (35) an appropriate discretized
version of the non-isotropic diffusive operator
0
62112
a ﬁ 0X1X3
p* * 2M 62111
0X1Xo
0

(101)

T
82U1 OZUZ

Ax e e > in first-order modified Eqs. (61) and (62). But, the discretiza-
1 2

to compensate the non-isotropic operator a, =— <

2M

tion of (101) on any mesh is not natural a priori: thus, the first additional condition introduced in Section 2.5 is not satisfied a
priori. Nevertheless, it should be interesting to test such a modification, at last on the linear wave equation. Let us now
choose (1, ;) = (0,a.Ax). In that case, it is easy to modify any colocated scheme by adding the discretized version of
Ax < 82111 BZUQ

the non-isotropic diffusive operator p.a, -— [ O, , ,
P P P& om ox2 " ox2

spurious wave. Nevertheless, the energy in the well-prepared subspace £ will decrease with a time scale of order M, and
the incompressible solution will be close to a constant at a time of order 1: thus, the second additional condition introduced
in Section 2.5 will not be satisfied.

T
0> to fluxes (35) to obtain a scheme that does not create any

5.7. Formal link with a stabilized colocated incompressible scheme

Let us now discretize the equation

L 0
0+ 379 = <f+vAu>7 (102)
q(t=0,x) = q°(x)

where f := —gz is a constant source term (g is the gravity and z is the vertical unitary vector) and where vAu is the physical
dissipation (v € R is the kinematic viscosity). Let us discretize on a 2D or 3D Cartesian mesh the acoustic operator L/M in
(102) with linear low Mach Godunov scheme (77), the other terms being discretized with a classical scheme. Thus, the first-
order modified equation is now given by

L Vv, Ar
0+ 379 = <f+VAu>’ (103)
q(t =0,x) = q°(x)

where v, = Vpum = %5 We have & /E(t) < ||f]|. Thus, the energy E(t) is bounded when f € (L2(T9))"** and when t € [0, 7] with
T < +o00. Moreover, by using the results proposed in Section 5.6, we see that for any v, > 0, Eq. (103) satisfies sufficient con-
dition (28) when f is a constant source term. This implies that estimate (29) is valid. Thus, we can write that r =r, + O(M)
which implies that the dynamic pressure IT := ;V;/g is of order 1 (we have also IT = % by using (18) with
p. = p.a? (1 + Mn) = O(p,a?)). Thus, we can formally write that dIT = a;\;lir

which allows to Writg that Eq. (103) is formally

a.

equivalent to
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) M\? oIl 2
V'”_‘;A”*<af> Bt with g:(ﬁl) . (104)
W IT = f + vAu !

ot

Let us now choose v, = 1 - (%)2 where / is a constant of order 1 (we recall that Eq. (103) satisfies (28) as soon as v, > 0 and f

is a constant source term: see above). Then, any stationary solution of (104) is solution of

(105)

V-u=JAx*AIl, (a)
VII=f+vAu. (b)

Eq. (105) is exactly the modified equation obtained in [21]. The term AAx?>AIT in (105)(a) is a Brezzi-Pitkdranta type stabil-
ization [34] (see (3.1) in [34]). This term allows to control the checkerboard modes induced by a colocated discretization of
the Stokes system [21]. This is completely coherent with the results proposed in [28].

5.8. Analysis on any mesh

The analysis proposed in Sections 4 and 5 explains with linear arguments the inaccuracy of Godunov type schemes at low
Mach number and justifies Conjecture 5.1 only when the mesh is Cartesian. Indeed, the notion of modified equation asso-
ciated to a numerical scheme is central in our analysis, and it is a priori difficult to define such a notion when the mesh
is not Cartesian. Nevertheless, the central argument concerns the invariance of the well-prepared subspace ¢ for the linear
wave equation (see sufficient condition (28)). This means that, to study the problem on any mesh, we have to generalize the
notion of invariance at the semi-discrete level (i.e. continuous in time and discrete in space). The first step is to define for a
given mesh a discrete well-prepared subspace et that is a good approximation of the continuous well-prepared subspace
£. The second step is to study how any discrete initial condition close to Egiscrere iS changed by the semi-discrete linear
scheme. We do not study this question in this paper.

Nevertheless, let us say that in the case of the 1D linear Godunov scheme, the work is simple. In [28], we build a discrete
well-prepared subspace Egiscrere that is invariant for the 1D linear Godunov scheme and stationary for the 1D linear low Mach
Godunov scheme. The results proposed in [28] are coherent with the first point of Lemma 4.2 and with Theorem 5.1.

When the mesh is triangular (or tetrahedral) and compatible with periodic boundary conditions, it is possible to define a
discrete well-prepared subspace Egisqrere that is stationary (and, thus, invariant) for the Godunov scheme and for the low Mach
Godunov scheme [35]. Let us underline that when the mesh is Cartesian, we have the same result only in the case of the low
Mach Godunov scheme [35], this result being the discrete version of Lemma 4.3.

These properties justify the results proposed in [36,37]. Indeed, it is proven in [36,37] with a formal asymptotic analysis
and with graph theory arguments that, when the initial conditions are well-prepared in the sense of (5), the 2D non-linear
Godunov scheme does not create any spurious waves when the mesh is a particular triangular mesh and when the spatial
domain Q is periodic (or unbounded in each direction). In [35], this result is proven in the linear case on any triangular (or
tetrahedral) mesh.

The fact that the linear or non-linear Godunov scheme with periodic boundary conditions has a behavior on a triangular
or tetrahedral mesh that is not the same than the one obtained on a Cartesian mesh is another argument which emphasizes
the importance of the space dimension in the analysis of the inaccuracy of Godunov type schemes at low Mach number (cf.
Section 3.2 and Lemma 4.2). Indeed, contrary to a Godunov type scheme on a Cartesian mesh, a Godunov type scheme on a
triangular mesh cannot be seen as a simple combination of two 1D Godunov type schemes: in a way, the numerical diffusion
on the velocity equation is “more” isotropic when the mesh is triangular (or tetrahedral) (we remind that the loss of invari-
ance of £ in Lemma 4.2 is linked to the fact that the velocity numerical diffusion in (60) is non-isotropic).

Nevertheless, this particular property of Godunov type schemes obtained on a triangular or tetrahedral mesh could be
limited although it is really remarkable. Indeed, it is obtained by supposing that the spatial domain Q is periodic or un-
bounded. When it is not the case, the proof in [35] is not valid. As a consequence, Godunov type schemes on any triangular
or tetrahedral mesh with non-special boundary conditions on 92 could create spurious waves at low Mach number as on a
Cartesian mesh. Numerical results proposed in Section 7.2 seem to confirm this assertion.

6. A weaker sufficient condition to avoid the creation of spurious waves at low Mach number

To satisfy (29), we have constructed the linear low Mach Godunov scheme in Section 5 in such a way the well-prepared
subspace € is invariant for first-order modified Eq. (33) (cf. condition (28)). In fact, we can propose a weaker sufficient con-
dition that only imposes the invariance of a family of subspaces Eyax that are not £ when MAx # 0 but that are close to £
when MAx < 1. Indeed, we can construct Fo% Mach XI/M i such a way, for any (M, Ax) € R x R* such that MAx < 1, there
exists a subspace Eyay of (L2(T9))'* that satisfies

Emae ® EL = (L2(TH)™, (a)
Vq € Emax 19 — Pqll < MAX|q||, (b) (106)
qu € Emax : q(t > 0) € Emax (C)
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since point 2 of Theorem 2.2 is valid when (28) is replaced by weaker condition (106). This weaker sufficient condition could
be a starting point to propose other modifications of the Godunov scheme than the one proposed in Conjecture 5.1 (see
scheme (82) that is equivalent to scheme (83)) or to study the influence of the nth-order terms (n > 1) of the modified equa-
tion. To obtain (29) with (106), we use the following lemma (whose proof is in Appendix A):

Lemma 6.1. Let A, be a family of linear applications on a Hilbert space H and let us suppose that € and £, are vector subspaces
of H such that £ & £+ = £, ® &~ = H. Let us define the Hilbertian norm || - || and another norm ||| - ||| in 1 possibly different to || - ||.
Then, the conditions

J(4,€) € R x Rfsuch that Vu € [0,&[: max(|| A, [||4.]) < 4, (a)

vge&u: [|(1-P)qgll < ullglll, (b) (107)
Al C &y (c)
imply that
YgeH, Yue0.el: [I(1-P)Ag| < 22/|[Pugl] + (1 - P)g] (108)

where P and P, are respectively the orthogonal projection onto £ and the projection onto £, along £*. By supposing also that there
exists > 0 such that Vq € H : |||q]|| < B||qll, we obtain the more precise inequality

. _ 2),
Vg e B, Vi e [0,min(e, f )L 11— P)Ag) <5 _ﬁ,flﬂ gl + 211 — P)ql- (109)
This proves that when u < 1, we have
VgeH: [[A-P)qll=0M) = [(1-P)Agl =0 +OM) (110)

that is to say
VgeH: [[A-P)qll=0M) = [(1-P)Ag|=0M)
when u=0M) <« 1.

Condition (107)(a) is natural since, in the context of the paper, A, is supposed to converge when p goes to zero to the
bounded linear operator A" defined with (24) and associated to the linear acoustic operator L/M (A" is an isometry
for the H'-norm ||| - ||| = || - ||;»)- Condition (107)(b) means that £, = £ (this is a consequence of £® &' = &, @ £ = H).
Then, £, can be seen as the “sum” of £ and of a "perturbation” €, of order "O(u)” when p < 1. We introduce the second norm
| - ||| because &, may need more regularity than £ (see the example below). In finite dimension, we do not need to introduce
this second norm. Moreover, we do not suppose in Lemma 6.1 that A, c £ when p € [0, ¢|. Indeed, if A, C £ when
1 € [0, ¢[, condition (28) would be satisfied for any u € [0, ¢[ and we could apply point 2 of Theorem 2.2 to obtain (29). Let
us note that condition (107)(b) is weaker than Vq € H : ||(P, — P)q| < u||q|||. To summarize, since £ is the kernel of the
acoustic linear operator L/M - that is to say Vq € & : A®™q = g -, the conditions on &, and A, mean that this kernel is
not really pertubed - thatis to say £, ~ & and Vg € £, : ||4.9 — q|| ~ 0 when u < 1 - even if zero is not an eigenvalue of
Flow Mach XI/M when Ax # 0. For example, let us define the system

{&ﬁ%qBﬂm (111)
q(t =0,x) = q°(x)
with
0
82u1 021,!2
Bua = | O oo | (112)
2
Uy
2

2,72y3 2121)3
We associate to PDE (111) the linear application Ay : {(L (T9)” = (L(T))",  we verify that $E(t) = — k|| V- ull> <o.

Q= Acuq® = (L, ). oM
Thus, A, , is a contraction on H = (L?(T2))* for the Hilbertian norm | - || = || - ||2. In other words, we have |4, || < 1. The sec-
ond norm ||| - ||| is defined with the norm in (H'(T?))® and is now noted || ‘IU/)_,I. We admit that (111) is well-posed in
l

L=([0, +oo[; (H*(T?))*) where s € N is large enough and that limy ol Au — AL i, = 0. Thus, since HAEO'L/M)HHI =1, there
exists 2> 1 and ¢ > 0 such that for any u € [0,¢[, we have ||A; .||,y < A This proves that condition (107)(a) is satisfied.
We also verify that the subspace

oy

r — r.
Euni=4q:= (ul ) € (LZ(TZ))3such that g =q + z‘lé 06‘2 where § := <u1> e&
+ Iy
0
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is the kernel of the operator b—B Thus, A€y =&y and condition (107)(c) is satisfied. Moreover, we have

£,® & = (I3(T?))? and g = Pq since § € £ and (5”2 0, 0) € &', and we have

Xy 7
[5,173 T
(ax 0 °>

where P is the Hodge projection (see Lemma 2.1 for the definition of the Hodge decomposition). This proves that condition
(107)(b) is satisfied (with u replaced by ut/(2a.)). Then, we can apply Lemma 6.1 to obtain inequality (108) (with u replaced

by u/(2a.)). But, since there does not exist > 0 such that Vq € (L*(T?))* : llgll; < Bllg|l, we cannot rigorously deduce esti-

Vg e [Pl = <o lally

mate (110) from (108) when p < 1. Nevertheless, since P,q = Pq + - ("”2 0 O) we have

DXy 7

8112 T
IPugllr < PGl + 5 - ;0,0 <Pl +5, - ||Q||H2
Hl
when q is enough regular (q € (H*(T?))® with s > 2), || - ||, being the norm in (H*(T?)). Thus, we can replace inequality
(108) with
vg e (H(T))", Ve 0,8l [[(1—-P)Agq] < (HEP’CIHH1 +5- ”qHHZ> + 41 =P)q|l. (113)

We deduce from inequality (113) that estimate (29) is satisfied when u = a.MAx and M € [0, ¢/(a.Ax)[. To summarize, we
have obtained that when numerical diffusion operator (112) is given by

0
82111 82 u;
AX| 52t
Buaxq = a. 5 ox Mixy |, (114)
82 U,
ox3
estimate (29) is valid for PDE (111) when M < 1 and when the initial condition g° is enough regular (q° € (H°(T?))® with
s > 2). Diffusion operator (114) is similar to operator (89) obtained with the linear Roe-Turkel scheme except on the pres-
sure equation, and it defines a scheme of type (83). Nevertheless, it is a priori difficult to use (114) to propose another simple
class of low Mach Godunov schemes in the non-linear case. Indeed, as for the Roe-Turkel scheme (see proof of point 1 of Prop-
osition 5.1 in Appendix C), it is difficult to find a basic modification to apply to a non-linear Godunov type scheme in such a
way the first-order modified equation is given by (111) and (114) in the linear case: in other words, the first of the two addi-
tional conditions introduced in Section 2.5 is not satisfied. At the opposite, the non-linear low Mach Godunov type schemes
proposed in Conjecture 5.1 satisfy these two additional conditions.

7. Numerical results

We show numerical results that prove that the Low Mach X schemes proposed in Section 5.4 (see also Conjecture 5.1) are
accurate at low Mach number when the X scheme is a Roe scheme [1] or a VFRoe scheme [2,3]. In the first subsection, we
solve the compressible Euler system in an unbounded (physical) domain (but, of course, in a bounded numerical domain); in
the second subsection, we solve the compressible Navier-Stokes system in a bounded (physical and numerical) domain.

Let us underline that boundary conditions are not taken into account from a theoretical point of view in this paper
although it is an important question. In particular, some numerical results seem to show that the low Mach Roe (or VFRoe)
scheme may not be stable when the upwinding on the pressure gradient is also deleted on all the interfaces that belong to the
boundary of the (numerical or physical) domain (we recall that the stability results proposed in Lemmas 5.1 and 5.2 are pro-
ven when the domain is periodic). Thus, to avoid such potential numerical instabilities, we do not change the Roe (or VFRoe)
numerical fluxes on the interfaces that belong to the boundary of the domain: numerical results proposed in this section
seem to show that this stabilizes the low Mach Roe (or VFRoe) scheme without changing the accuracy properties obtained
in a periodic domain at low Mach number.

7.1. Compressible Euler system in an unbounded physical domain

The test-case consists in a flow in an unbounded 2D channel with a bump defined by

X5 (1) = cos((x; — )m)] if x; €[1,3],=01if x; ¢ [1,3].

10 -

The fluid is a perfect gas that is to say p = pRT and h = 'RT where R =287 ] kg ' K! and 7 = 1,4. Although the physical
domain is unbounded, the (numerical) domain 2 - where the simulation is done - is of course bounded it is included into
the domain [0,4] x [0, 1]. The unboundedness of the physical domain is taken into account through the boundary conditions
on x; = 0 and x; = 4 where the flow is supposed to be defined by the flow at the infinity. The boundary condition on x; = 0 is
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defined by (p,h) = (py, ho) and u = ug := (U, 0) with p, = 10° Pa and hy = 25 kJ kg '. The velocity u;, is a strictly positive

constant such that the initial Mach number M::[‘;—"Dp is equal to 107 or 107>: here, we have the relation
7Po/Po

U =M x 10* ms1. The boundary condition on x; = 4 is defined by p = p,. The boundary condition on x3™(x;) and
x> = 1 is a slipping boundary condition. The initial condition is given by (p,h,u) = (py, ho, o). We test the low Mach Roe
scheme and the low Mach VFRoe scheme proposed in Section 5.4 with a quadrangular or triangular mesh of only 40 x 10 cells.

7.1.1. Results on a quadrangular mesh
The iso-Mach and iso-pressure lines on Figs. 1 and 2 show that the solution given by the Roe scheme is not correct (see

Fig. 11 in [38] for a correct solution). At the opposite, Figs. 3-6 and 8 show that the solutions given by the low Mach Roe

|

Fig. 1. Iso-Mach, Roe scheme, Mach = 102

} :

B e oSl

Fig. 2. Iso-pressure, Roe scheme, Mach = 1072,

=

-

Fig. 4. Iso-pressure, Low Mach Roe scheme, Mach = 102

Fig. 5. Iso-Mach, Low Mach Roe scheme, Mach = 103,
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'

L
g NSRRESSEE

Fig. 6. Iso-Mach, Low Mach VFRoe scheme, Mach = 102



S. Dellacherie /Journal of Computational Physics 229 (2010) 978-1016 1003

scheme and the low Mach VFRoe scheme are close to the incompressible solution on a quadrangular mesh. Figs. 7 and 8 show
that the result is better with the low Mach VFRoe scheme than with the low Mach Roe scheme on the density field: this is per-
haps due to the fact that the low Mach Roe scheme is built by also deleting the upwinding of the discretization of the con-
vective operator V - (pu ® u) which is not the case with the low Mach VFRoe scheme (see Conjecture 5.1 and Section 5.4).
Nevertheless, the result on the density field is not really important since any O(M) density perturbation does not perturbe
the velocity and pressure fields (see well-prepared initial conditions (5)). Let us underline that the results on Figs. 3 and 5

Fig. 7. Iso-density, Low Mach Roe scheme, Mach =102

Fig. 8. Iso-density, Low Mach VFRoe scheme, Mach = 1072,

0.001 T T
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~<—— Roe scheme
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1e05 > 1
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-
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1e07 5 :
0.001 0.01
Fig. 9. PuacPuin (M), Cartesian mesh.
1
Roe scheme
0.01f o/ .
1e-04 /’f Low Mach Roe scheme i
1e-06 4 Low Mach VFRoe scheme
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= 0 100 200 300 400 500 600 700

Fig. 10. Residual, Cartesian mesh, Mach = 1072,
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show that the solution given by the Low Mach Roe scheme does not depend on the Mach number M: of course, any incom-
pressible solution has to satisfy this property.

Fig. 9 shows that the pressure fluctuations are of order M with the Roe scheme and of order M? with the low Mach Roe
scheme as with the Roe-Turkel or VFRoe-Turkel schemes [7,8]. This figure confirms that the Roe scheme creates spurious
pressure waves of order O(MAx) and that the low Mach Roe scheme does not create such spurious pressure waves. Figs. 10
and 11 show the residuals. Fig. 10 shows that the Roe scheme converges. Nevertheless, it converges toward a bad solution
(see Figs. 1 and 2). We can see on Fig. 10 that the low Mach VFRoe scheme needs more iterations to converge to the stationary
solution than the low Mach Roe scheme. Fig. 11 shows that the more the Mach number is close to zero, the more it is difficult

Low Mach Roe scheme, Mach = 0,01
1e-04 /

\ / Low Mach Roe scheme, Mach = 0,001
1006 t\ .
\
iy |

1e-10 //

ted2| |f

1e-14 L : s .
0 500 1000 1500 2000 2500

Fig. 11. Residual, Cartesian mesh, Mach =102 and 103,

Fig. 12. Iso-Mach, Low Mach VFRoe scheme, Mach = 1072,

Sl

Fig. 13. Iso-pressure, Low Mach VFRoe scheme, Mach = 1072,
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Fig. 14. Iso-density, Low Mach VFRoe scheme, Mach = 1072,

S\

Fig. 15. Iso-Mach, VFRoe scheme, Mach = 102,
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Al

Fig. 16. Iso-pressure, VFRoe scheme, Mach =102

el -

Fig. 17. Iso-density, VFRoe scheme, Mach = 102,

to converge toward the incompressible solution. Of course, this is due to the existence of two different time scales in com-
pressible Euler system (1) when the Mach number goes to zero.

7.1.2. Results on a triangular mesh

We have also tested the Low Mach VFRoe scheme on a triangular mesh when M = 1072 Figs. 12-14 confirm the previous
results. Moreover, Figs. 15-17 confirm that Godunov type schemes do not suffer of any inaccuracy at low Mach number on
triangular (or tetrahedral) mesh when the domain is periodic or unbounded [35-37] (see also Section 5.8). Fig. 18 shows that
the low Mach VFRoe scheme on a triangular mesh needs more iterations than the VFRoe scheme to converge. We can also note
that the low Mach VFRoe scheme converges with less iterations on a triangular mesh than on a quadrangular mesh (compare
Figs. 10 and 18).

7.2. Compressible Navier-Stokes system in a bounded physical domain

We now study the 2D natural convection test-case studied in [39-41] by solving the compressible Navier-Stokes system
with a gravity term (g = 9.81 m s~2) in a bounded (physical) domain Q. The domain @ is a 2D square whose area is equal to
L x Lwith L = 1.528 x 10~ m . The fluid is the perfect gas defined in Section 7.1 with u = 1.619 x 107° kg m~1 s=1 (viscosity)
and 2 =2.29 x 10> Wm~! K ! (conductivity). The boundary conditions are the following:

X=0: T=28315K and u=0ms,
Xx=L: T=26315K and u=0ms,
x2=0: 9,T=0Km™? and u=0ms",
x=L: 9,T=0Km! and u=0ms"!.

(115)

We can deduce from the previous physical quantities that the flow is such that M ~ 10~* (Mach number), Ra ~ 10° (Ray-
leigh number) and Pr ~ 0.71 (Prandtl number), which gives a Reynolds number Re := \/Ra/Pr of about 37. The convective
part of the system is discretized with the Roe scheme or with the low Mach Roe scheme proposed in Section 5.4. The physical
diffusive part of the system is discretized with a finite volume type scheme.

0.01
VFroe scheme

1e-04 L»\ /
e Low Mach VFRoe scheme |

\ 4
1808 | e gl
1e-10 | e
1e-12 | e ]
1e-14 . . . .

0 50 100 150 200 250

Fig. 18. Residual, Triangular mesh, Mach = 102,
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Fig. 22. Iso-Mach, Roe scheme, 1st triangular mesh.

Fig. 23. 2D triangular mesh.

Fig. 24. Iso-Mach, Roe scheme, 2D triangular mesh.
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Fig. 27. Iso-Mach, Low Mach Roe scheme, 3D triangular mesh.

one of Figs. 21 and 23. Nevertheless, the proof in [36,37] does not take into account any boundary conditions. In the same
way, the generalization of this proof to any type of triangular or tetrahedral mesh proposed in [35] does not take into account
any boundary condition. Of course, boundary conditions (115) - especially the Dirichlet boundary condition applied to the
temperature in the energy equation - are essential for the natural convection problem studied in this subsection, which per-
haps explains why the numerical results are not good on Figs. 24 and 26 although the mesh is triangular. At the opposite, the
low Mach Roe scheme remains accurate when the mesh is triangular (see Fig. 27) as well as when the mesh is Cartesian (see
Fig. 20): these numerical results are a good surprise since all the theoretical results proposed in this paper are obtained for a
periodic or unbounded domain Q.

8. Conclusion

We have shown in the linear case that the convergence of a compressible Euler solution toward an incompressible Euler
solution when the Mach number goes to zero is a direct consequence of the invariance of the well-prepared subspace

E={q:= ") e (L*(1%)"* such that Vr =0 and V-u =0
u

for the linear wave equation. Indeed, this invariance property avoids the creation of spurious (pressure and velocity) waves
that are responsible for the loss of accuracy of Godunov type schemes at low Mach number in the non-linear case. Then, we
have proposed to characterize a compressible colocated X scheme of Godunov type or not as being free of any spurious wave
at low Mach number when the first-order modified equation associated to this X scheme applied to the linear wave equation
preserves the well-prepared subspace £ or a subspace &yax that is an appropriate approximation of £ when M <« 1 and
MAXx <« 1.

Then, we have shown that a non-linear Godunov type scheme applied to the compressible Euler system on a 2D or 3D
Cartesian mesh cannot be accurate at low Mach number because the first-order modified equation associated to the linear-
ized Godunov scheme without convection does not preserve the well-prepared subspace £ in 2D and in 3D and transfers
energy of order 1 from the well-prepared subspace £ toward the acoustic space £ at an acoustic time scale. This loss of
invariance is linked to the fact that the numerical diffusion operator in the velocity equation is non-isotropic. Nevertheless,
the well-prepared subspace £ remains invariant in 1D. This underlines that Godunov type schemes remain accurate at low
Mach number in 1D. We have also underlined the importance of the space dimension with a formal analysis of the Roe
scheme applied to the compressible Euler system. These statements emphasize that, firstly, the numerical diffusive terms
on the mass and energy equations are not responsible for the loss of invariance in 2D and 3D at low Mach number. Secondly,
this underlines that the inaccuracy can be explained (at least partly) with linear arguments and without any convection
operator. Nevertheless, the non-linearities can amplify this inaccuracy through, for example, the non-linear convective oper-
ator and, thus, through shear waves. Moreover, boundary conditions can also contribute to the loss of invariance of the well-
prepared subspace &.

At the opposite, by deleting the numerical diffusion on the velocity equation of the first-order modified equation, we re-
cover the invariance of the well-prepared subspace £ in the linear case. As a consequence, we have proposed in the non-lin-
ear case and on any mesh the class of low Mach X schemes where X is a colocated scheme of Godunov type or not. A low Mach
X scheme is simply built by centering the discretization of the pressure gradient, the rest of the scheme being unchanged. This
simple modification is also justified by the fact that Roe-Turkel type schemes [4-9,13], the Roe scheme with pressure cor-
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rection [10], the AUSM*-up scheme [12] or the colocated schemes proposed in [16-18] are similar or identical at low Mach
number to a low Mach X scheme. Moreover, by studying the L* stability in the linear case, we have noted that the time dis-
cretization of the low Mach Godunov scheme may be explicit as well as implicit (we recall that the Roe-Turkel scheme has to
be implicited). At last, 2D numerical results show that the low Mach Roe scheme and the low Mach VFRoe scheme are stable
and accurate at low Mach number on quadrangular and triangular meshes. Nevertheless, we emphasize that the low Mach X
schemes are designed to give stable and accurate results only at low Mach number. But, it should be easy to adjust the delet-
ing of the upwinding of the pressure gradient to be able to simulate flows whose Mach number is not everywhere or every-
time close to zero. At last, let us underline that we have formally shown that there exists a link between the low Mach
Godunov scheme and a colocated incompressible scheme stabilized with a Brezzi-Pitkdranta type stabilization [21].

Appendix A. Proof of Lemmas 2.4 and 6.1

Proof of Lemma 2.4: Since A is a linear isometry, there is conservation of the inner product that is to say
Y(qy,q,) € H x H : (Aqq,Aq>) = (qq,q>). Thus, by taking (q;,q,) € £ x £, we obtain that (Aq,, Aq,) = 0. Thus, we have
Aq, € (AE)* that is to say Aq, € £ since A is supposed to be surjective. This proves that AE* c &5, O

Proof of Lemma 6.1: Let us choose g € H. We have
A1-P)Ag=Q1-P)APq+(1-P)A,1 - Pyu)q

where P, is the projection onto &, along £*. Thus, we have
1A =P)Auq| < |1 = P)APLq| + 11 = P)AQ - Pu)q].

We know that A,P.q € &, since A,&, C &,. Thus, we have
(1= P) ARGl < ull[AuPpgl|l-

Moreover, |[(1 —P)AL(1 —Py)q| < ||A«(1—Py)q| since P is an orthogonal projection. And by using the fact that A, is
bounded by 4 for the norm |-|, we obtain that [[(1-P)A,1-Pu)q| <A|1-Puq|. And since
11— P,)qll < I(P — P,)qll + 11 — P)q|l, we can write that

1 = P) Al < plll AP pglll + 21 (P = P)qll + 411 = P)q].

Moreover, we have P = PP, since P and P, are projections along the same subspace. Then, we have (P — P,)q = (P — 1)P,q
that implies [|(P — P,)q|| < y|||P.q||| since P,q € £y. Thus, we obtain that

(1 =P)Auqll < (AP Lglll + Z1PLgll)) + A (1 = P)gll < ([ Al + DIPqll] + A1 = P)q]|
< 22u[IPuglll + AI(1 = P)ql] when € [0, ]
by using also the fact that .4, is bounded by 4 for the second norm ||| - |||. This gives inequality (108). Moreover, we have
Pug=PPug+ (1 -P)Puq=Pq+(1-P)Puq (116)

since P = PP,.. Let us now suppose that there exists § > 0 such that Vq € H : [||q]|| < B||q|. Then, inequality (107)(b) and rela-
tion (116) imply that |||P.q||| < BI|Pq|| + pul||P.q||| that is to say |||P.q]|| < 17’—‘/W|\[P’q\| when p € [0, min(e, f~')[. We obtain
inequality (109) by noting that |Pq| < ||q|| since P is an orthogonal projection. [

Appendix B. Proof of Lemmas 5.1 and 5.2
Here, we define a := a, /M to simplify the notations. A necessary condition for L* stability is that |2*] < 1 where 4* are the
eigenvalues of the amplification matrix of each scheme in the Fourier space: this condition is the von Neumann necessary

condition [27].

Proof of Lemma 5.1: In the Fourier space, the amplification matrix of explicit scheme (78) is given by

1_ 2aAt K, sin? <’<AX> _ a_Ati sin(kAx)
Gexp(At K) _ AX 2 AX (117)
" ; aAtisin(kAx) 1 2aAtK sin? (kAx)
& I

(i is the imaginary number such that i* = —1). We have
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2aAt kAX aAt\? 4 (kAX aAt\’ . 2
exp _ _ _ _ o o= o= o=
det(G,”(At, k) — Al) = (1 N-(1-nE= Ax (K,+Ku)sm ( 5 )+4( ) KrKy Sin < 5 >+ (Ax) sin(kAx)

2aAt kAx aAt\?
=(1-)2-(1-n== Ax (K, + K,) sin® <2>+4<E)
sin? (2% [ic,1c, sin? (2% 1 cos? (KA
XS s {7 ) s T
2aAt kAx aAt\?
= (1= 2 = (1= ) =L E (1 + ) sin’ (2 )+4<_Ax>

x sin’ (@) [ Krky — 1) sin® (k?) + 1}

2422 {&At (1cr + 1) sin <@>—1} 1+2£‘t
Ax 2
x sin® < AX){ aat (1, — 1) sin® (kg)() +1] = (16 + KU)}

that is to say
det (GyP(At, k) — ) = 22 + 22 (K + k)0 — 1]+ 1+ 2u0? L2p[(Krky — 1)0° + 1] — (Kr + Ku)}
with

_aae
_ast

kAx
0_\sm( 5 >|.

The discriminant A" of the polynomial i—det(G;” (At, i) — ZI) is given by
A = [ + 1) 07 — 117 = 1 = 2u0? 2u[(ic,3¢, — 1) +1] — (K, + K4)}
= 12 (K, 4+ K)20 + 1 = 256 + 1,)0% — 1 — 4p20% (k3¢ — 1)0% + 1] + 20% (K, + Ky

= 12 (K, + 1,)20% — 42 0% (16,76, — 1)0% + 1] = 4p>0°

2
4#01[@4& 92—1}.

Then, the eigenvalues 2" and /.~ are given by

2
W@Z — (Kt — 1)0% — 1}

—1=1-pp’ [(Kr + 1K) \/[("f - Ku);2+ 4)0° - 4|

11\/[ ) i Ui } (118)

(1 + 1,207

2
B = [y + 1) 07 — 1] £ ZﬂGJ {w-ﬁ- 1|6

that is to say

=1 = uk, +1,)0°

o First case: x, € R and k, = k,. Then

1-0?
0 |

2= =1 2p,0° {1 + 1
Kr
Thus

AP =14 4020% K% — 4u0ic, + 4p20° (1 — 0?)

that is to say
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A =14 4p0®{u[l — 0* + 0°K?] — K, }. (119)

This proves that |2*| < 1 when u < But

Kr
1-07+0% k2"
1 0% + 0*k? < max(1,k?2).

Thus, the stability condition may be written with u < "7) that is to say with

I
max(1,k?

fe < min(kp, k).

¢ Second case: k,; € R and k, = 0. Then

F=1-uk 6|1+

Let us choose ¢? € [0, 4 ] Then

2
Kp+4

(;c3+4)02—4]' (120

K20°

+_ 1 2 .
m=1—-uk 07 |1+i 0

[ 4- (k2 +4)92]

Thus

PP = (1 — pbPi,)* + 12074 — (K2 + 4)0%) = 1 + 120°K2 — 2u6% K, + 4120° — 120°K? — 4120°
that is to say

P =14 2u0?2u(1 — 6%) — k). (121)
Thus, the stability condition is given by y < ZLZ that is to say p < %. Let us now choose 0’ e 4 1} .Then 2* € R.

1-09) K244’
(K2 +4)0° —4 120 + 40 — 1)

2 7
But, we have €[0,1] since ¢ — 1 < 0. Thus, 14, /7 T =4

> 0 and the stability con-

K207 K207 K20?
dition applied to (120) is given by
2
Hs (12 +4)0% — 4
Kl |14 [
K20
2 2 _

But, the function 6*—6% |1 + w is positive and bounded by 2 on {%7 1]. Thus, the stability condition is
given by ;0 i +4

<1
P

r

To summarize, we have obtained the stability condition

. (K 1
< =,— |-
u\mm(z,m) (]

Proof of Lemma 5.2: The eigenvalues /* of the amplification matrix G;;’”” (At, k) associated to implicit scheme (81) are such
that 1/,* are the eigenvalues of

14 ZZit K, sin? (k%“> %‘Xtisin(kAX)
imp -1 _
(G (AL K) T = aAt, . 2aAt . 5 (kAx "
Ay sin(kAX) T+ =35 Fusin® (-

The eigenvalues 1/* of [GI™(At, k)] are deduced from those of GI**(At, k) by replacing u with —g in formula (118). Thus,
we have

1
1+ wﬂcr : ) +4)0° 4}

Kr 4 K42 0°

=

1+ p(K, + 16,)0°




S. Dellacherie /Journal of Computational Physics 229 (2010) 978-1016 1013

o First case: x, € R and k, = k,. We deduce from (119) that
= ! !

T AuP {1 — 0 + K2 — i} 1+ 4u0P{ul — 0 + k2] + i}

Thus, we have |4*| < 1 for any u > 0.

e Second case: k, € R and k, = 0. Let us choose ¢ ¢ [O,K%H]. Then, we deduce from (121) that

P = L !

T —2uP2u(1 - 0%) — k] 1+ 2u0°2u(1 — 07) + K]

Thus, we have |2*| < 1 for any p > 0. Let us now choose ¢ ¢ [ ‘:4,1]. Then, /* € R since

K?
+ 1

(k2 1+ 4)% — 4]

1+
K20°

1+ .0

(K2 +4)0°> — 4

But, we know that the function ¢*—6% |1 + 20
KI‘

is positive on {%, 1} (see proof of Lemma 5.1). Thus, we
have also 0 < 2* < 1 for any ¢ > 0. Pt

Remark on the von Neumann condition when x, € R} and k, = ,: The von Neumann condition is a necessary condition
to obtain the L? stability: see condition S of the Kreiss matrix theorem (see [27], p. 74). Nevertheless, we can prove that
PG®P" is diagonale where G is given by (117) and where

1 /1 1
P=p'=—
¢§<1 —1>

when sin(kAx) # 0. Moreover, when sin(kAx) = 0, we have 2" =/~ := 2 and G, = Al (where [ is the identity matrix). This
proves that condition S of the Kreiss matrix theorem is satisfied for the amplification matrix G;*. We obtain the same result
for the amplification matrix G defined with (122) since G, is also diagonalizable with P.

Appendix C. Proof of Proposition 5.1

Point 1: The Roe-Turkel scheme applied to the linear wave equation

L
0+ 2q =0 (123)
is given by
d 1?1‘141/2.1' - 1?1.,;1/2.)' 1?2.1'441/2 - 1?2‘1'.;71/2 B
& g+ PP Fapp —fave g (124)
where
= 2 ity 15457
Fl,i+1/2.j:Al%_§P YPA(Giaj — i), (125)
= ~ Qi+ q; 15155
Faijiip = Az % - jP 1|PA2\(Q:'J+1 - gij)
with
010 0 01
A=%11 0 0] and A2=%]0 0 0
™M M
0 0O 1 00

In (125), P is the Turkel preconditioning matrix [14,15] defined with

M* 0 O
P=(0 10
0 0 1

. 0 M> 0
The spectral decomposition of PA; =% 1 0 0 | is given by
0 0 O
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1 H
M=-0,: 1= % —ﬁ s l1:\/—¥- -1
0 0
1 1
M
ha=a.: = 1] 12:\@ 1
0 0
0
A3=0: T3713 0
1
Thus
M v -10 w 1.0 1 00
PAl|=a.-(nebh+neb)=—==|| % % 0|+ % 0||=a|0 10
0 0 O 0 0O 0 0O
Finally, we obtain
H 00
~ A~ a.
P*‘\PA1|=M* 0O MO (126)
0 0 O
A similar calculation gives
L a % 00
P”\PA2|:M* 00 O (127)
00 M
Thus, scheme (124) and (125) can be rewritten with
d 2 Qi1 — iy | 5 Qijr1 — Gija
@it T oA T T oA,
L 0 0 L0 0
o a M Qiy1j — 2Gij + qi1j M Qiji1 — 2Gij + qij
=5M 0 MO AX. +]10 0 O Ax . (128)
0 0 O 0 0 M

We conclude by noting that the first-order modified equation associated to scheme (128) is given by (61) where B,q is de-
fined with (89).

Point 2: The Roe scheme with pressure correction applied to linear wave equation (123) is defined with (124) and

0
= < Qij+ iy 15 a.
F1j+1/2.j:AIUTH”_E‘AIK(]HU_QU)"'W Ui — Urij |
0
129
qij+q 1 0 | )
—~ —~ .. L. —~ a*
Faijiip :AZUTUJA*j‘AZKquH —4;j) oM 0

Upijr1 — Upjij

The corrected fluxes (129) are deduced from (42) restricted to the case of linear wave equation (123). By taking P =1in(126)
and (127), we obtain

1 1 00
~ a,
5 |A1(Gi1j — Gi5) = M 1 0 |Gy — i)
00
and
1 1 00
~ a,
) |A2|(Gij — Gi5) = P 0 0 0 [(qij1—qiy)-
0 0 1

Moreover, we have
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0 0 0O
a, a,
M Upip1j — Uy | = M 1 0 |(qi15—Giy)
0 0
and
0 0 00O
a, a,
M 0 =M 0 0 O [(qij1— i)
Upijr1 — Unjij 0 0 1

Thus, scheme (124) (129) can be rewritten with

100 100

2 4 LA i1j— iy iy Qiji1—qij _ . _a 000 Giy1j— 2G5 +Gi 1 +looo Qiji1— 2G5+ Gij 1

de i T 2AK, 27 2Ax, 2M Ax AX,
000 000

(130)

We conclude by noting that the first-order modified equation associated to scheme (130) is given by (61) where B,.q is de-
fined with (90).
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